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Abstract

It is a well-known fact that financial returns exhibit conditional heteroscedastic-

ity and fat tails. While the GARCH-type models are very popular in depicting the

conditional heteroscedasticity, the α-stable distribution is a natural candidate for the

conditional distribution of financial returns. The α-stable distribution is a generaliza-

tion of the normal distribution and is described by four parameters, two of which deal

with tail-thickness and asymmetry. However, practical implementation of α-stable

distribution in finance applications has been limited by its estimation difficulties. In

this paper, we propose an indirect approach of estimating GARCH models with α-

stable innovations by using as auxiliary models GARCH-type models with Student’s

t distributed innovations. We provide comprehensive empirical evidence on the per-

formance of the method within a series of Monte Carlo simulation studies and an

empirical application to financial returns.

Keywords: Indirect Inference, α-stable Distribution, GARCH Models, Student’s t

Distribution.
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1 Introduction

Most of the financial returns exhibit conditional heteroskedasticity and heavy-tailedness.

While the conditional heteroskedasticity is standardly captured by means of GARCH or

stochastic volatility (SV) models (e.g. Bollerslev (1986), Ghysels et al. (1996)), depicting

the empirically observed fat-thickeness of financial returns is not always straightforward.

Although theoretically most of the GARCH and SV specifications can accommodate for

fat-tailedness through their specification, in practice, in most of the cases, there is still

excess kurtosis left in the standardized residuals. A very common solution to this prob-

lem is to assume a fat-tailed distribution for the standardized innovations of the GARCH

models, and the Student’s t is a natural candidate (e.g., Calzolari et al. (2003)). However,

one drawback of the Student’s t distribution is that it lacks in stability under aggrega-

tion, which is of particular importance in portfolio applications and risk management. A

fat-tailed distribution that overcomes the drawbacks of the Student’s t is the α-stable. Its

theoretical foundations lay on the generalized central limit theorem. Moreover, similar to

the Student’s t distribution, the α-stable can be easily adapted to account for asymmetry in

the underlying series. The main drawback of this specification is its estimation. The fact

that, for most of the parameters constellations, the α-stable does not have a closed-form

density specification or the theoretical moments simply do not exist, makes the estima-

tion of its parameters a cumbersome task and limits the interest among academics and

practitioners.

In this paper we show how GARCH models with α-stable innovations can be estimated by

using the indirect inference (IndInf) method proposed by Gouriéroux et al. (1993). This

estimation approach has already proved its adequacy in estimating the parameters of the

stable distribution in Lombardi and Calzolari (2008), Lombardi and Calzolari (2009) and

Garcia et al. (2011). In the GARCH context, the α-stable distribution is first mentioned by

de Vries (1991) and Ghose and Kroner (1995), while the GARCH model with α-stable

innovations is first proposed by McCulloch (1985) within a restricted framework and
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by Liu and Brorsen (1995b) within a more general context. The theoretical stationarity

properties of GARCH models with α-stable innovations are studied by Panorska et al.

(1995) and Mittnik et al. (2000). In what regards the estimation, Liu and Brorsen (1995a)

propose the Maximum Likelihood (ML) approach, however for very specific values of the

parameters and GARCH specification.

Our paper aims at alleviating the estimation problems in implementing the GARCH model

with α-stable innovations under a very general parameter setting. Our implementation

does not impose any parameter or model specification constraints and uses a GARCH

specification with Student’s innovations as an auxiliary model within the IndInf method.

The choice of the auxiliary model is motivated by the fact that there is a rather natural

correspondence between the two models: besides having the same number of parameters

and a common GARCH specification for the conditional variance model, the degrees of

freedom in the Student’s t distribution is the direct counterpart of the parameter of stability

or characteristic exponent in the stable distribution, as both measure the tail-thickeness of

the distribution. Within a thorough Monte Carlo experiment and an empirical application

to nine time series of financial returns of DJIA, SP500, IBM, sampled at different frequen-

cies (daily, weekly, monthly), we provide valuable empirical evidence in favor of applying

the IndInf method under very general model specification and parameter settings.

The rest of the paper is organized as follows: Section 2 gives a short introduction to

α-stable family of distributions, Section 3 focuses on describing the model of interest,

namely GARCH with α-stable innovations, Section 4 introduces the indirect inference

method and Section 5 describes the estimation of the model of interest. Section 6 presents

the results of a Monte Carlo experiment, while Section 7 shows results from estimating

the model on real data. Section 8 concludes.
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2 α-Stable Distributions

The stable family of distributions, which is also known under the name α-stable, consti-

tutes a generalization of the Gaussian distribution by allowing for asymmetry and heavy

tails. From a theoretical point of view, the use of models based on stable distributions is

justified by the generalized version of the central limit theorem, in which the condition

of finite variance is replaced by a much less restricting one concerning a regular behavior

of the tails. It turns out that stable distributions are the only possible limiting laws for

normalized sums of iid random variables (Feller (1966)). The lack of closed formulas for

density and distribution functions (except for a few particular cases) has been, however, a

major drawback of the stable distributions in applied fields.

A random variable X is said to have a stable distribution if and only if, for any positive

numbers c1 and c2, there exists a positive number c and a real number d such that

cX + d
d
= c1X1 + c2X2 (1)

where X1 and X2 are independent and have the same distribution as X and d
= stands for

equality in distribution. If d = 0, X is said to be strictly stable. In order to show that

the stable distribution is a generalization of the normal, let the variable X ∼ N(µ, σ2).

The sum of n independent copies of X is N(nµ, nσ2) distributed and [X1 + X2 + · · · +

Xn]/c− d d
= X , where c =

√
n and d = (

√
n− 1)µ.

The most concrete way to describe all possible stable distributions is by means of their

characteristic function. The characteristic function of a stable random variable is of the

form

φ1(t) :=


exp

{
iδ1t− γα|t|α

[
1− iβ sgn (t) tan πα

2

]}
α 6= 1

exp
{

iδ1t− γ|t|
[
1− iβ 2

π
sgn (t) ln |t|

]}
α = 1

(2)

where sgn (t) = t/|t| for t 6= 0 (and 0 for t = 0), α ∈ ]0, 2] is the index of stability or

characteristic exponent that describes the tail-thickness of the distribution (small values
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correspond to thick tails), β ∈ [−1, 1] describes the degree of asymmetry of the distribu-

tion, γ ∈ R+ is the scale parameter and δ1 ∈ R is the location parameter. When β = 0,

the distribution is symmetric; when β > 0 the distribution turns out to be right skewed

and for β < 0 the distribution is left skewed. The case β = 1 corresponds to a perfect

positive skewness: the distribution has density zero on the negative semi-axis and positive

values on the positive one. Conversely, when β = −1 the distribution is totally skewed to

the left.

The stable distribution is characterized by four parameters (α, β, γ, δ1) and is denoted as

S1(α, β, γ, δ1).

Note that when α = 1, φ1(t) is not continuous in the parameters. This is a source of prob-

lems for what concerns estimation and inferential purposes. An alternative way to write

the characteristic function that overcomes the problem of discontinuity is the following

φ0(t) =


exp

{
iδ0t− γα|t|α

[
1 + iβ sgn (t) tan πα

2
(|γt|1−α − 1)

]}
α 6= 1

exp
{

iδ0t− γ|t|
[
1 + iβ 2

π
sgn (t) ln(γ|t|)

]}
α = 1

(3)

In this case the distribution is denoted by S0(α, β, γ, δ0). Expression (3) is more cum-

bersome, and the analytic properties have less intuitive meaning. Despite that, it is much

more useful for what concerns statistical applications and, unless otherwise stated, we

will refer to it in what follows.

The correspondence between δ0 in S0 and δ1 in S1 is given by:

δ0 =


δ1 + βγ tan πα

2
if α 6= 1

δ1 + β 2
π
γ ln γ if α = 1

(4)

On the basis of the above relationship, a S0(α, β, 1, 0) corresponds to a S1(α, β, 1,−β tan πα
2

),

provided that α 6= 1. Note also that when β = 0, the immaginary term (the asymmetry

factor) in equations (2) and (3) disappears and the two parameterizations coincide.
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Let Z ∼ S0(α, β, 1, 0). Then:

X =


γ(Z − β tan πα

2
) + δ0 if α 6= 1

γZ + δ0 if α = 1

(5)

is S0(α, β, γ, δ0) distributed. If, on the other hand, Z ∼ S1(α, β, 1, 0), then:

X =


γZ + δ1 if α 6= 1

γ(Z + β 2
π

ln γ) + δ1 if α = 1

(6)

is S1(α, β, γ, δ1) distributed. Z is thus the standardized version of X . In the sequel, the

standardized α-stable distribution Sk(α, β, 1, 0) is denoted by Sk(α, β) for k = 0, 1. The

characteristic function of a standardized α-stable distribution, symmetric around zero,

reduces to

φk(t) = e−|t|
α

for both k = 0, 1.

The α-stable density functions admit closed form only in a very few special cases: if

α = 2, then the stable distribution coincides to a normal distribution with mean parameter

δ and variance parameter 2γ2. Since tan πα
2

= 0, the characteristic function is real and,

hence, the distribution is always symmetric, regardless of the values of β, which becomes

unidentified; if α = 1 and β = 0, then the stable distribution coincides to a Cauchy

distribution with location parameter δ and scale parameter γ; and, if α = 1/2 and β = ±1,

then the stable distribution coincides to a Lévy distribution with location parameter δ and

scale parameter γ.

A further nice property of the stable distribution is that one can simulate pseudo-random

numbers. Chambers et al. (1976) develop an algorithm by starting from two independent

variables V and W , with V uniformly distributed on (−π
2
, π
2
) and W exponentially dis-

tributed with mean 1, and 0 < α ≤ 2. Thus, symmetric stable pseudo-random numbers
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can be obtained as follows

Z =


sinαV

(cosV )1/α

[
cos((α−1)V )

W

](1−α)/α
if α 6= 1

tanW if α = 1.

(7)

Z has a S0(α, 0) = S1(α, 0) distribution. Non-symmetric stable pseudo-random num-

bers can be obtained for any −1 ≤ β ≤ 1 by defining ζ = arctan(β tan πα
2

)/α and

constructing

Z =


sinα(ζ+V )

(cosαζ cosV )1/α

[
cos(αζ+(α−1)V )

W

](1−α)/α
if α 6= 1

2
π

[
(π
2

+ βV ) tanV − β ln
(
π
2
W cosV
π
2
+βV

)]
if α = 1,

(8)

which has a S0(α, β) distribution. Pseudo-random numbers containing also the location

and the scale parameters δ0 and γ may be straightforwardly obtained using the standard-

ization given in Equation (5). Similarly, pseudo-random numbers with S1(α, β, γ, δ1)

distribution can be obtained by exploiting Equation (6).

3 α-Stable GARCH Models

Several studies have highlighted the fact that heavy - tailedness of asset returns can be the

consequence of conditional heteroskedasticity. The GARCH models of Bollerslev (1986)

have become very popular for their ability to account for volatility clustering and heavy

tails. However, some empirical studies (e.g., Yang and Brorsen (1993)) indicate that the

tail behavior of GARCH models remains too short even with Student-t distributed error

terms. Furthermore, the Student-t distribution lacks the stability-under-addition property.

Stability is desirable because stable distributions provide a very good approximation for

large classes of distributions. To overcome these weaknesses, one can apply GARCH

models with α-stable innovations.
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Although asymmetrical distributions and leverage effects are of particular importance in

financial applications, we will focus in this paper mainly on the symmetric stable dis-

tributions, more precisely on GARCH models with symmetric stable innovations, which

were first proposed by McCulloch (1985)1. However, the model introduced by McCulloch

(1985) is restricted to absolute values and to an integrated conditional standard deviation

model. Here we adopt the model introduced by Liu and Brorsen (1995b), which is more

general, and adapt it to symmetric stable innovations.

The variable Yt is defined to follow a symmetric α-stable GARCH(1,1) if:

Yt = c+ εt, εt = ztσt (9)

σλt = ω + α1|εt−1|λ + β1σ
λ
t−1 (10)

with ω > 0, α1 > 0, β1 > 0 and zt being identically and independently distributed as

a standard symmetric α-stable variable, zt ∼ S0(α, 0). The model from above could be

easily generalized to a GARCH(p, q) model by including additional lags. Traditionally,

the GARCH model corresponds to λ = 2, which is also the focus of the present paper. If

α = 2, then the model from above collapses to the GARCH-normal model of Bollerslev

(1986). Without loss of generality, we assume c = 0. Thus the unknown parameters of

the model are: α, ω, α1, β1.

As already mentioned by Liu and Brorsen (1995a), the stationarity conditions for such

a model are stricter than the conditions for the normal GARCH. While for λ < α and

1 < α 6 2, Mittnik et al. (2000) show that the process has a unique strictly stationary

solution when ω > 0, α1 > 0, β1 > 0 and E|zt|λα1 + β1 6 1, there are no analytical

stationarity conditions for the case 1 < α 6 2 and λ = 2. As in Liu and Brorsen (1995a),

we will verify the stationarity conditions of the model given in equations 9-10 for λ = 2

by means of Monte Carlo experiments (see Section (6)).

1Studying non-symmetric α-stable GARCH models as well as symmetric α-stable Threshold GARCH
models is left for further research.
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The specification given in equations 9 and 10 is so far implemented and estimated in Liu

and Brorsen (1995a) by means of ML method for very specific values of λ. Although very

appealing, applying the ML to estimate the model from above found so far little applica-

tion in the existing literature. This might be due to the difficulty of implementing the ML

approach to estimate the parameters of the stable distribution, given that the distribution

has a closed-form density function only for very specific values of α. As an alternative,

our paper applies the IndInf approach, which proves to be a valuable alternative to the

ML method to estimate the stable parameters (Lombardi and Calzolari (2008) and Garcia

et al. (2011)). Sections 4 and 5 give a through description of the IndInf method and of its

application to estimate the parameters of the symmetric stable GARCH model specified

above.

4 Indirect Inference Estimation

The indirect inference estimation method introduced by Gouriéroux et al. (1993) is a

simulation-based technique, which is suitable to solve difficult or intractable estimation

problems. The absence of the closed-form density for the stable-distribution as well as

of the moments of order greater than two makes this method a valuable candidate for

the estimation of its parameters (see Lombardi and Calzolari (2008) and Garcia et al.

(2011)). The idea behind the IndInf estimation method is to replace the model of interest

(true model) with an approximated model, which is easier to handle and estimate (auxil-

iary model). One important requirement of this technique is that one can easily simulate

random values from the true model.

Let yt, t = 1, ..., T be a series of observed values of the random variable Yt, character-

ized by a probability density function f0(θ, yt), which is intractable or difficult to han-

dle. The unknown parameter vector θ is in the interior of the parameter set Θ ∈ Rr,

hence is of dimension r × 1. Denote θ0 to be the true value of the parameter vector
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θ, which is also in the interior of Θ. Denote by L0(y1, y2, . . . , yT ; θ) the log-likelihood

function of the true model based on the observed values. Thus, given the intractability of

L0(y1, y2, . . . , yT ; θ), the maximum likelihood estimator of θ0, which is given by:

θ̂ML = arg max
θ
L0(y1, y2, . . . , yT ; θ) (11)

is not available. However, as already mentioned above, it is assumed that it is possible

to generate independent random draws of yt and to obtain artificial values ys1, ..., y
s
T for a

given value of the parameter vector θ.

The idea behind IndInf estimation method is to find an auxiliary density function fa(yt, ψ),

which is easier to handle and which is characterized by the parameter vector ψ in the set

Ψ ∈ Rq. The corresponding log-likelihood function of the auxiliary model is given by

La(y1, y2, . . . , yT ;ψ), which is available analytically.

The IndInf estimation method implies the following steps: firstly, compute the pseudo-

ML (PML) estimator of the pseudo-true ψ0 from:

ψ̂ = arg max
ψ
La(y1, y2, . . . , yT ;ψ) (12)

Under standard regularity conditions of the PML estimation technique, its distribution is

given by:
√
T (ψ̂ − ψ0)

d−→ N
(
0q, (J(ψ0)I

−1(ψ0)J(ψ0))
−1),

where 0q is a q × 1 vector of zeros, J(ψ0) is minus the expectation of the Hessian of the

log-likelihood of the auxiliary model and I(ψ0) is the Fisher information matrix of the

auxiliary model.

Secondly, for a given value of θ, simulate S paths of length T from the initial model:
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ys1(θ), . . . , y
s
T (θ), with s = 1, . . . , S and estimate

ψ̂ST (θ) = arg max
ψ

1

S

S∑
s=1

La(ys1(θ), ys2(θ), . . . , ysT (θ);ψ) (13)

Thirdly, find the indirect inference estimator θ̂ such that ψ̂ and ψ̂ST (θ) are as close as

possible:

θ̂(Ω) = arg min
θ

[ψ̂ − ψ̂ST (θ)]′ Ω [ψ̂ − ψ̂ST (θ)] (14)

where Ω is a weighting matrix, which is symmetric nonnegative definite and defines the

metric. Denote p(θ) to be the link between θ and ψ as a binding function, such that

p(θ0) = ψ0. The third step involves, in general, numerical optimization, since, in most

cases, there is no analytical correspondence between ψ and θ, i.e., there is no analytical

solution to p(θ) = ψ.

An alternative approach, introduced by Gallant and Tauchen (1996), considers directly

the score of the auxiliary model. The idea is to find the optimal θ such that the score,

computed on the simulated observations and at the value ψ̂ is as close as possible to

zero. Provided that a closed form for the gradient of the auxiliary model is available, this

approach has an important computational advantage: it avoids the numerical optimization

in Equation (13).

Under certain regularity conditions (see, Gouriéroux et al. (1993)), the indirect inference

estimator θ̂(Ω) is consistent and asymptotically normal for S fixed and T →∞:

√
T (θ̂(Ω)− θ0)

d−→ N
(
0,W (S,Ω)

)
where

W (S,Ω) =
(

1 +
1

S

)[∂p′
∂θ

(θ0) Ω
∂p

∂θ′
(θ0)

]−1∂p′
∂θ

(θ0)

× Ω J(ψ0)
−1I(ψ0)J(ψ0)

−1 Ω
∂p

∂θ′
(θ0)

[∂p′
∂θ

(θ0) Ω
∂p

∂θ′
(θ0)

]−1
.
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First, one should note that the dimension of the auxiliary parameter ψ, namely q must

be greater than or equal to the dimension of the parameter of interest θ, namely r in

order to get a unique solution for θ̂. Second, when the problem is just identified, i.e. the

dimension of the two parameter vectors is equal, the results are independent of the choice

of the matrices that define the metrics, Ω. On the contrary, when q > r, it is necessary to

choose a metric Ω to measure the distance between ψ̂ and ψ̂ST (θ). The optimal choice of

Ω is

Ω∗ = J(ψ0)I(ψ0)
−1J(ψ0)

and the corresponding IndInf estimator is denoted by θ̂∗. Based on Ω∗, the variance-

covariance matrix of the IndInf estimator reduces to

W ∗
S ≡ W (S,Ω∗) =

(
1 +

1

S

)[∂p′
∂θ

(θ0) J(ψ0)I(ψ0)
−1J(ψ0)

∂p

∂θ′
(θ0)

]−1
(15)

5 Indirect Estimation of Stable GARCH Processes

Since simulated values from α-stable distributions can be straightforwardly obtained as

described in Section 2, the indirect inference approach is particularly suited to estimate

the parameters of the α-stable GARCH models presented in Section 3. We implement

this method by considering as an auxiliary model a GARCH approach with Student’s t

innovations2. The choice of the Student-t distribution is motivated by the fact that its

parameters have a clear and interpretable matching to those of the α-stable distribution:

the degrees of freedom parameter ν is naturally linked to the tail parameter α, as both

describe the thickness of the tail. Here we implement the Student-t distribution in terms

of η = ν−1, which is the reciprocal of the degrees of freedom ν. Thus, the auxiliary model

is given by

Yt = ca + ξt, ξt = ut
√
ht (16)

2A similar approach is implemented by Calzolari et al. (2004)

11



ht = ωa + α1,aξ
2
t−1 + β1,aht−1 (17)

with ωa > 0, α1,a > 0, β1,a > 0 and ut is identically and independently distributed as a

symmetric Student-t variable, ut ∼ t1/η. Similar to Equation 9, we set ca to 0.

In the IndInf framework presented in Section 4, the parameter vector θ is given by θ =

(ω, α1, β1, α)′ and is of dimension 4 × 1 (r = 4) and the parameter vector ψ is given by

ψ = (ωa, α1,a, β1,a, η)′ and is also of dimension 4 × 1 (q = 4). Thus the dimension of

the true parameter vector and the auxiliary parameter vector is the same and, therefore, in

the IndInf optimization routine we replace the metric Ω, respectively Ω∗ by the identity

matrix, I4.

Numerical results on the indirect inference estimation of the α-stable GARCH(1,1) model

are displayed in sections 6 and 7.

6 Monte Carlo Study

A detailed set of Monte Carlo experiments has been performed to check the reliability of

the indirect estimation method when applied to the GARCH(1,1) model with symmetric

α-stable noise. Student’s t GARCH(1,1) has been used as an auxiliary model. As already

mentioned in Section 5, there is a rather ”natural” correspondence between the parameters

of the two models (same number of parameters; just identified case): ω, α1 and β1 are the

GARCH parameters of the true model, while ωa, α1,a and β1,a are the GARCH parameters

of the auxiliary model. The tail-thickness parameter in the true model is α, while in the

auxiliary model is η, which is the reciprocal of the (symmetric) Student’s-t degrees of

freedom ν.

The values of the parameters have been chosen as to mimic real-case values (the only

exception being the ω parameter, which has been chosen to be larger); a moderately large

length of the time series has been adopted in all experiments (T=10000, roughly compa-

12



rable with the length of the daily series in the empirical application described in Section

7). As a multiplicative length-factor to produce simulated series, we take S = 10: thus

100000 is in all experiments the length of the simulated series to be handled by the auxil-

iary model.

As a constant for the GARCH parameter, namely ω, the value 0.01 has been always

adopted: it will therefore not be reported in Table 6, which gives the estimation results for

the present Monte Carlo experiments. A value of the persistence parameter α1+β1 = 0.98

has been obtained with different combinations of α1 and β1, varying α1 from 0.20 to 0.05.

As far as the tail-thickness parameter α is concerned, four different values have been

experimented with, ranging from a ”close to Gaussian” value (1.98) to a moderate ”fat-

tail” value (1.80).

Other combinations of parameters have also been tried. For instance a larger value of the

persistence parameter α1 + β1 = 0.99, as well as smaller values of α (till 1.60), implying

even thicker tails. Not all these additional experiment were successful, as the combination

of GARCH and thick-tail noise in several cases led to ”exploding” values of the simulated

series. This was a sort of experimental evaluation of the non-stationarity of the process

for some combinations of parameter values. At the same time these parameter values

were not realistic, when compared with the values estimated from real series, thus they

are not reported here for the sake of brevity. On the contrary, there were no problems

when simulating series of data using the ”realistic” combinations of parameters included

in the table. This has been considered a sort of empirical or computational assessment of

the stationarity conditions, not otherwise analytically analyzed.

Each set of simulation results presented in Table 6 has been obtained with R=1000 Monte

Carlo replications. In each replication, T=10000 ”pseudo observations” have been gener-

ated, and indirect estimation is obtained by setting to zero (or ”minimizing”) the score of

the auxiliary model on S×T=100000 simulated data (as in Gallant and Tauchen (1996)).

Performances of the estimation method are quite remarkable. With very few exceptions,
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Table 1: Monte Carlo results: average estimates and standard deviations (in parentheses)
over R = 1000 Monte Carlo replications, based on T = 10000 number of observations
and S = 10 number of simulation paths

Parameters of Estimated parameters
the true model True model Auxiliary model

α1 β1 α α1 β1 α α1,a β1,a η

.200 .780

1.80
.200 .780 1.80 .157 .779 .235

(.0097) (.0077) (.0168) (.0076) (.0074) (.0122)

1.85
.200 .780 1.85 .161 .779 .196

(.0099) (.0082) (.0161) (.0080) (.0079) (.0124)

1.90
.200 .779 1.90 .167 .779 .153

(.0100) (.0088) (.0149) (.0085) (.0085) (.0127)

1.95
.200 .779 1.95 .175 .779 .102

(.0102) (.0094) (.0126) (.0092) (.0091) (.0137)

1.98
.201 .779 1.98 .184 .779 .059

(.0109) (.0100) (.0089) (.0109) (.0097) (.0154)

.100 .880

1.80
.100 .880 1.80 .083 .879 .153

(.0060) (.0055) (.0193) (.0044) (.0051) (.0127)

1.85
.100 .880 1.85 .081 .879 .196

(.0059) (.0058) (.0161) (.0047) (.0055) (.0123)

1.90
.100 .880 1.90 .083 .879 .153

(.0062) (.0064) (.0149) (.0051) (.0061) (.0127)

1.95
.100 .879 1.95 .087 .879 .102

(.0066) (.0071) (.0071) (.0057) (.0068) (.0137)

1.98
.100 .879 1.98 .092 .879 .060

(.0069) (.0076) (.0094) (.0064) (.0073) (.0156)

.050 .930

1.80
.050 .929 1.80 .039 .929 .234

(.0033) (.0037) (.0168) (.0026) (.0037) (.0126)

1.85
.050 .930 1.85 .040 .930 .196

(.0036) (.0043) (.0161) (.0028) (.0041) (.0123)

1.90
.050 .930 1.90 .042 .929 .153

(.0062) (.0040) (.0050) (.0149) (.0149) (.0127)

1.95
.050 .930 1.95 .044 .929 .102

(.0045) (.0060) (.0126) (.0038) (.0057) (.0137)

1.98
.050 .929 1.98 .046 .929 .060

(.0049) (.0069) (.0094) (.0044) (.0066) (.0156)
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estimates of the model of interest (true model) seem unbiased (differences between the

average estimates and the parameters used to generate the data are observable only after

the third digit). Moreover, our computations show that the empirical standard deviations

presented in parentheses are very close to the theoretical standard deviations as derived

from Equation (15) (differences are only observable after five digits).3

Concerning α1 and β1, the variance of the parameters in the model of interest, as expected,

are always larger than the corresponding auxiliary parameters, but the difference is not

very large.

The estimate of β1 is nearly unbiased also in the auxiliary model (see β1,a); on the con-

trary, α̂1 is always remarkably downward biased in the auxiliary model (see α1,a). The

bias is being adjusted by the indirect estimation procedure. Moreover, one can observe

the direct correspondence between the estimates of α and the estimates of ν: larger the α

is, smaller the η is, which indicates a large value for the Student’s t degrees of freedom ν.

7 Empirical Application

The GARCH(1,1) model with symmetric α-stable noise has been estimated on the series

of monthly, weekly and daily log-returns of:

1. Dow Jones Industrial Average (DJIA) stock index from May 4th, 1950 to June 25th,

2012 (744, 3241, and 16212 observations for the monthly, weekly and daily series,

respectively);

2. Standard & Poor’s 500 (SP500) index from January 1st, 1964 to June 25th, 2012

(581, 2529, and 12649 observations, respectively) and

3. IBM share’s prices from January 1st, 1973 to June 25th, 2012 (473, 2059, and

10299 observations, respectively).

3Tables with theoretical standard deviations can be obtained from the authors upon request.
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Data have been obtained from Thomson Reuters Datastream.

Indirect estimation has been performed using a large value of the multiplicative length-

factor for the simulated series (S = 100). Convergence has always been achieved inside

the parameter space of the auxiliary model. The only ”additional” problem with respect

to the simulation exercise is the choice of a ”good” value for the α parameter, as an initial

value for the iterative procedure.

Table 2: Empirical results. Standard deviations are reported in parentheses. M stands for
monthly, W stands for weekly and D stands for daily.

Estimated parameters
Data True model Auxiliary model

ω α1 β1 α ωa α1,a β1,a η

DJIA

M .111e-3 .109 .820 1.951 .109e-3 .100 .808 .094
(.4368e-4) (.0300) (.0444) (.0394)

W .987e-5 .068 .899 1.946 .887e-5 .059 .899 .106
(.2127e-5) (.0094) (.0128) (.0188)

D .567e-6 .049 .933 1.899 .474e-6 .041 .933 .152
(.6233e-7) (.0028) (.0033) (.0101)

SP500

M .890e-4 .094 .848 1.938 .721e-4 .080 .848 .124
(.4346e-4) (.0282) (.0407) (.0501)

W .914e-5 .092 .882 1.950 .753e-5 .078 .884 .105
(.2364e-5) (.0125) (.0146) (.0227)

D .312e-6 .052 .936 1.895 .240e-6 .043 .936 .158
(.4756e-7) (.0030) (.0032) (.0115)

IBM

M .375e-3 .090 .821 1.940 .348e-3 .080 .812 .116
(.1993e-3) (.0318) (.0628) (.0529)

W .145e-4 .039 .936 1.871 .127e-4 .032 .936 .177
(.4180e-5) (.0068) (.0096) (.0293)

D .124e-5 .032 .952 1.851 .103e-5 .026 .952 .193
(.1716e-6) (.0023) (.0027) (.0131)

Table 2 reports the estimated values of the parameters for both true and auxiliary models,

as well as the standard deviations (in parentheses) of the estimated indirect inference

parameters of the model of interest, computed based on Equation (15).4 For a financial

analyst, it can be interesting to observe that the largest value of the persistence parameter

4We refrain from reporting the standard deviations of the estimated parameters of the auxiliary model,
as they are of no interest for our purposes. However, they can be easily obtained in the standard way typical
to the PML procedure.
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(α1 + β1) is for the daily returns of the SP500 index (0.988), and the smallest value of the

α parameter (thickest tails of the standardized GARCH residuals) is for the daily returns

of IBM (1.85). This is an expected result, since the indexes mirror an aggregate behavior

of the composing stocks, which are differently affected by extreme financial events (e.g.,

Black Monday in 1987 or the previous financial crisis). This leads to thinner tails for the

index return series than for a certain composing stock, especially for large-cap stocks with

high liquidity, such as IBM.

Moreover, within each group of the considered financial assets, we observe that the returns

sampled at the highest frequency (daily) exhibit the largest persistence as well as the

fattest tail, as indicate it by the largest value of α1 + β1 and the smallest value of α.

This result is not surprising, since it is a well known fact that increasing the frequency

in sampling stock returns increases the clustering and the persistence degree as well as

the degree of fat-thickeness. Moreover, as the values of ω̂

1−α̂1−β̂1
show, returns sampled at

higher frequency exhibit larger (unconditional) variance than the ones sampled at lower

frequency.

For a computational econometrician, it can be interesting to observe that β1 in the model

of interest is usually almost equal to its correspondent β1,a in the auxiliary model, but

α1 is always larger in the model of interest than its correspondent α1,a in the auxiliary

model. The close behavior between the true and the auxiliary model is motivated by the

monotonic relationship between the α parameter in the model of interest and the ”degrees

of freedom” of the Student’s-t in the auxiliary model, ν: the smaller α, the larger η = ν−1

(reciprocal of the degrees of freedom).

8 Conclusions

In this paper we apply the indirect inference method to estimate the parameters of a

GARCH model with stable innovations. As most of the financial returns exhibit con-
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ditional heteroskedasticity and fat-tails, there is a common practice among scholars and

practitioners to capture these features by means of GARCH models with fat-tailed dis-

tributed innovations. A standard choice is to consider Student’s t distributed innovations,

however, at the costs of lack of stability under aggregation. An alternative is to consider

α-stable distributions that remain stable under aggregation and combination, which is

particularly appealing in portfolio theory. However, this alternative comes at the costs of

estimation, due to the absence of closed form density function and of moments for most

of the parameter values. As a solution to this problem we apply the indirect inference

method introduced by Gouriéroux et al. (1993) with a GARCH conditional variance and

Student’s t innovations as auxiliary model.

The simulation study reveals very good results for a large pallet of parameter choices: with

very few exceptions, the estimates of the model of interest seem unbiased at a minimal

variance cost. The empirical results from applying the method to nine series of financial

returns sampled at three different frequencies provide further empirical evidence in favor

of using the indirect inference method for estimating the parameters of a GARCH model

with stable innovations.
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