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Abstract. Current numerical model checkers for stochastic systems can efficiently
analyse stochastic models. However, the fact that they are unable to provide de-
bugging information constrains their practical use. In precursory work we proposed
a method to select diagnostic traces, in the parlance of functional model checking
commonly referred to as failure traces or counterexamples, for probabilistic timed
reachability properties on discrete-time and continuous-time Markov chains. We
applied directed explicit-state search algorithms, like Z*, to determine a diagnostic
trace which carries large amount of probability. In this work we extend this approach
to determining sets of traces that carry large probability mass, since properties of
stochastic systems are typically not violated by single traces, but by collections of
those. To this end we extend existing heuristics guided search algorithms so that
they select sets of traces. The result is provided in the form of a Markov chain.
Such diagnostic Markov chains are not just essential tools for diagnostics and de-
bugging but, they also allow the solution of timed reachability probability to be
approximated from below. In particular cases, they also provide real counterexam-
ples which can be used to show the violation of the given property. Our algorithms
have been implemented in the stochastic model checker PRISM. We illustrate the
applicability of our approach using a number of case studies.

1 Introduction

Motivation. Software debugging is an important task in the design, implementation and
integration of systems. In particular Model Checking techniques have recently been used
extensively to aid the developer in fixing errors. To this end it is necessary that Model
Checkers provide meaningful debugging information. In Model Checking of functional prop-
erties such information can be made available without additional computational cost. In
the case of a safety property violation, Model Checkers like SPIN [1] deliver a single linear
failure trace from the initial state to a property violating state that may later be used in
locating the cause of a property violation. In model checking parlance such a failure trace is
called a counterezample to the desired safety property. To obtain short and therefore easy
to comprehend counterexamples, search techniques such as Breadth-First Search (BFS) or
Directed Model Checking (DMC) [2], which relies on heuristics guided state space search,
can be employed.

Performance and dependability models are usually represented as stochastic models
describing how the system changes from state to state as time passes. In the presence of
stochastic models we are not just interested in detecting functional failure behavior of the
system but in the quantitative analysis of its dependability and performance. We use the
terms target state for states which we are interested in, i.e. states satisfying a given state
proposition, and diagnostic traces for traces leading to target states. As in the functional



setting, DMC algorithms can be employed in the Model Checking of safety properties
to select diagnostic traces that are meaningful in the fault localization process. However,
contrary to the functional setting, in the stochastic context we are faced with two main
challenges. First, indicative of the quality of a diagnostic trace is not its length, but its
probability mass. Hence, in order to use heuristics guided search techniques it is necessary
to find a new quality measure based on the probability mass of traces as well as heuristics
functions based on this measure that steer the search along traces with high probability
mass. We first addressed this problem in [3]. Second, one diagnostic trace is in general not
enough to provide meaningful error information for explaining why some probabilistic safety
property is satisfied or not since all diagnostic traces contribute jointly to the probability
of the property. Thus, the developer needs to consider a reasonably large set of diagnostic
traces in order to debug the model. Obviously, the more probability this set carries, the
more expressive it is. In this work we address this challenge using advanced heuristic guided
algorithms which make it possible to incrementally select a set of diagnostic traces with a
high probability mass. This set forms a Markov chain which emulates the original model
with respect to the given property.

In our approach, the set of diagnostic traces is incrementally selected. Its probability
mass gradually grows during the search process with every iteration. However, it can always
be ensured to be a lower bound of the total probability of the given property. In other words,
the total probability of the given property to be satisfied is approximated from below. In
particular cases, our method can be used to generate a counterexample which shows the
violation of the given property. In this case a set of traces is computed whose probability
is not smaller than the given probability upper bound. In order to repair the model, the
developer has to consider the computed set. That is because, it is not possible to decrease
the total probability to be under the given upper bound without applying changes to this
part of the model.

Related Work and State of the Art. Many heuristic strategies and algorithms have been
introduced to solve problems of, amongst others, graph search and optimization. In [4],
Pearl has given a widespread overview of a set of general-purpose problem solving strategies,
e.g. Best First (BF) and Generalized Best First (GBF'). Also a variety of specialized directed
search algorithms, e.g. A* and Z* , have been proposed. An approach how to apply heuristics
guided directed search algorithms to functional explicit state Model Checking, especially
for the generation of counterexamples, has been presented in [2].

Discrete- and continuous-time Markovian models, e.g. Markov chains and Markov de-
cision processes, build a very important and widely used class of stochastic models [5—
7). Prevalent stochastic Model Checkers, like PRISM [8], ETMCC [9] and its successor
MRMC [10], apply efficient numerical methods to analyze Markovian models with respect
to performance and dependability properties expressed in a stochastic temporal logic, like
the Probabilistic CTL (PCTL) [11] or the Continuous Stochastic Logic (CSL) introduced
in [12] and extended in [13]. These numerical approaches reach a high degree of numerical
result accuracy. However, they are memory intensive because they keep the whole state
space of the model in memory. Another disadvantage of these approaches is their inability
to deliver debugging information, in particular diagnostic traces.

Some approaches attempt to reduce the memory consumption of stochastic Model
Checking using Monte-Carlo sampling methods [14-16]. Our method and these approaches
have the generation of explicit paths through the stochastic model in common. However,
while the goal of these approaches is to perform the stochastic model checking using Monte-
Carlo sampling, ours is to dissect a meaningful portion of the model.



In our own precursory work we proposed an approach based on Directed Model Check-
ing to select a diagnostic trace which carries a high probability for a given probabilistic
safety property specified on a discrete-time Markov chain [3]. We have also proposed an
approximation based on uniformization to deal with continuous-time Markov chains. Our
approach is memory saving because it is performed on the fly.

Structure of the Report. In Section 2 we introduce the stochastic models which we use as
well as related notations and further preliminaries. Section 3 gives an overview on directed
stochastic algorithms. In Section 4 we introduce our new algorithms and discuss their
properties. Section 5 contains case studies and experimental evaluation of the approach.
We conclude the report in Section 6.

2 Stochastic Systems

2.1 Markov Chains

A discrete-time Markov chains (DTMC) is a probabilistic transition system consisting of
states and transitions between them. Each transition is labeled with a numerical value
called transition probability. It indicates the probability for firing this transition as the
next step of the system if the system is in the origin state of the transition. Formally, we
define a DTMC as follows:

Definition 1 A labeled discrete-time Markov chain (DTMC) D is a quadruple
(S, Sinit, P, L), where

— S is a finite set of states
— Sinit € S is an initial state
— P:S5xS —[0,1] is a probability matriz, satisfying that for each state s, > P(s,s') =
s’es
1.

— L : 8 — 247 s a labeling function, which assigns each state a subset of the set of
atomic propositions AP. We interpret this to define the set of valid propositions in the
state.

For each pair of states s and s', P(s,s’) gives the probability to move from s to s’. For a
pair of states s and ', a transition from s to s’ is possible if and only if P(s,s’) > 0 holds.
A state s is called absorbing if P(s,s) = 1 and consequently, P(s,s’) = 0 for all other
states s’ # s.

Ezxample 1. Figure 1 illustrates a simple DTMC D = (S, sg, P, L) with S = {sq, s1, $2}-
The probability matrix P is given on the left hand side of the figure. On the right hand
side of the figure, the DTMC is illustrated as a state transition graph. The labeling function
L can be, for example, defined as:

L = {(s0, {idle}), (s1,{active}), (s2, {broken})},
where AP = {idle, active, broken}. The state s is obviously absorbing.

Because of their simplicity, DTMCs are widely used in the modeling and analysis of
stochastic systems. However, as the name already indicates, time is assumed to be discrete.
If a more realistic modeling is required, then continuous-time Markov chains (CTMCs) are
used. While each transition of a DTMC corresponds to a discrete time-step, in a CTMC
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Fig. 1. A simple DTMC.

transitions occur in real time. Instead of transition probability, each transition is labeled
by a rate defining the delay which occurs before it is taken. The probability of a transition
from s to some state s’ being taken within ¢ time units is described by a random variable
which follows a negative exponential distribution with the transition rate as a parameter.
To simplify matters, we illustrate our approach on DTMCs. However, we note that our
approach can deal with CTMCs due to a uniformization based approximation presented in
[3].

2.2 Paths and Traces

We now define the notions of paths and traces frequently used in this report when talking
about the probability mass of system execution. In this section, let D = (.5, Sinst, P, L) be
a DTMC.

Definition 2 An infinite path through D is a sequence so — $1 — S2 — ... with, fori € N,
s; €S and P(si, si+1) > 0. A finite path is a finite sequence sg — $1 — ...8;—1 — 8 with,
for alli e {0,...,1}, s; €S, P(si,8i+1) > 0 for all i <1 and s; is absorbing.

Paths? denotes the set of all (finite and infinite) paths through D. For some state s,
PathsP(s) denotes the set of all paths starting in s. For some path o, define states(o) as
the set of all states and trans(o) as the set of all transitions appearing in o. length(o) is the
number of transitions, i.e. length(o) = |[trans(c)|. For a number 4, with 0 < i < length(o),
oli] is the i-th state of o and o 1 i refers to the finite prefix of o of the length i. The
notations given in the paragraph are defined on finite prefixes as on paths.

Example 2. For the path o = sg — s1 — sg — $1 — s2 through the DTMC from Example 1,
we get states(o) = {so, 51, $2} and trans(c) = {(so, $1), (51, 50), (51, $2)) }. length(o) is 4.
ol0], as well as o[2], is sg, and o[4] is s2. The Oth finite prefix of o is so and the 3rd is
S —S81 — 89 — S1.

The probability measure Pr of paths is defined in a standard manner on the smallest o-
algebra on Paths? (sint) generated by sets of paths with a common finite prefix as follows:

Pr({oc € PathsD(smit) |oTn=s9—s1— ... >s,}) = P(so,81) ... - P(Sn—1,5n),

where s is just another reference to the initial state, i.e. sg = Sjnst. Obviously, the set
{0 € PathsP(sinit) | 0 T n = so— 81— ... —s,} is completely characterized by the
prefix sg — s1 — ... — s,. Thus, we rewrite the equation above replacing the set by the
prefix itself:

Pr(sp—s1— ... = 8n) = P(80,81) * ... - P(Sn—1, Sn)-

Definition 3 A trace is a finite sequence of states < Sg,S1,...,Sn >, including the self
loops of all states so, ..., sn, where, for all i € {0,...,n — 1}, it holds that s; # sit+1 and
P(Si, 8i+1) > 0.



For a given trace R =< sq,81,...,8, >, we define the following notation: first(R) =
S0, last(R) = sy, states(R) = {s0,51,.--,5n}, trans(R) = {(si,si+1) | 0 < i < n} U
{(siy81) | 0<i<m A P(si,s;) >0} and length(R) = |states(R)| — 1. We refer to the set
of all traces through the DTMC D as Traces®. For a pair of states s and s/, TracesD(s, s')
refers to the set containing all traces through D from s to ', i.e. TracesP(s,s') = {R €
TracesP | first(R) = s A last(R) = s'}. If D is clear from the context we omit the
respective superscript.

We point out that, using the notation of traces, we abstract from the number of repe-
titions of a cycle. Repeating the cycles in a concrete way results in a concrete finite prefix
which induces a set of paths. Thus, each trace R can be considered as a compact represen-
tation of a set of paths Paths(R) which we formally define as follows:

Paths(R) :={ o € Paths(first(R)) | In € N: last(oc T n) = last(R)
A states(o 1 n) = states(R) (1)
A trans(o 1 n) C trans(R) }.

This means that each path ¢ from Paths(R) starts with a finite prefix from first(R) to
last(R) which hits each state from R using exclusively transitions from R. Note that not
all transitions of R have to appear in the path . Consequently, o does not have to contain
all self loops of R. We are usually interested in paths from Paths(R) which reach last(R)
before a given time bound 7. We call such paths time bounded and refer to this subset of
Paths(R) as Paths(R,T). Formally, Paths(R,T) is defined as follows:

Paths(R,T) :={ o € Paths(R) | In < T : last(oc 1 n) = last(R) }.
Note that Paths(R) is equal to Paths(R, c0).

Example 3. Ry =< sg, 1,82 > and Ry =< sg, s1, So, S1, S2 > are examples for traces in the
DTMC D described in Example 1. The sets of paths induced by R; and R, for the time
bound 4 are:

Paths(R1,4) = {o € Paths(so) | 0 T2 =s9g— 51— S2}
Paths(Rz,4) = {0 € Paths(sg) | 0 12 =s0—$1 — s2}
o1

U {0 € Paths(so) 4=89—81—8 — 81— S2}

Note that, Paths(R1,4) is a subset of Paths(Rz,4).

Traces are relevant because search algorithms act on the state transition graph of the
model and deliver, as will be shown later, traces as a result. Thus, it is important to define
a mass to measure the stochastic quality of traces. For this purpose, we consider each trace
as a set of paths. Accordingly, for a trace R and time bound T, we define a function 1) as
follows:

Y(R,T) = Pr(Paths(R,T)). (2)
This definition presumes that first(R) is a start state of the DTMC. Intuitively, ¥ is the
probability mass of the set of time bounded paths induced by the trace R.

Ezample 4. For the trace R; and Ry from Example 3, we compute ¢(R1,4) and ¢(Rg,4)
as follows:

Y(R1,4) = Pr(Paths(R1,4)) = Pr(so —s1 —s2) =1.0-0.1=0.1
Y(R2,4) = Pr(Paths(R2,4)) = Pr(so — s1 — s2) + Pr(so — s1 — so — $1 — S2)
=10-01+1.0-09-1.0-0.1=0.19



Using the function v, we are now able to compare traces with respect to their stochastic
quality. For two traces, the one with the higher v value is considered to be superior to the
one with the lower value. Accordingly, we define the optimality of traces as follows.

Definition 4 Let M be a set of traces. We call a trace R € M optimal over M, iff for any
other trace R' € M the following inequality holds:

(R, T) = (R, T).

We call traces, which do not contain cycles except for self loops, forward traces. More
precisely, a trace R =< s, $1,...,8, > is a forward trace iff Vi,j € {0,1,...,n} : s; =
Sj = 1= ]

3 Directed Algorithms for Probabilistic Timed Reachability

3.1 Probabilistic Timed Reachability Properties

In our approach we address an important class of properties for stochastic systems namely
probabilistic timed reachability (PTR) properties. Such properties express a constraint on
the probability of reaching some state satisfying a given state proposition ¢ within a given
time period T'. We restrict ourselves to ¢ being state propositions and call states satisfying
¢ target states, and we write s = ¢ for any target state s. PTR properties are safety
properties. They are widely used in specifying dependability and performance properties of
systems. For instance, for some production machine one wants to know what the probability
is that some failure occurs, e.g. the assembly line gets stuck, or the control unit crashes.
PTR properties can be cast as instances of the following pattern:

”"What is the probability to reach a state satisfying a state proposition ¢ within
time period 1?7

In stochastic temporal logics like PCTL [11] or CSL [13], such properties are formulated
as follows:

PO=T ).

The operator ¢ has here, similar to LTL and CTL, the eventuality meaning of reachability
with the difference that it is time bounded. The superscript < T' adds the condition that
the reachability condition has to hold at the latest at time point 7. We note that (0=7 ¢) is
a short form of (T'rue U< 1 ¢). The operator P is responsible for computing the probability
mass of all paths satisfying its operand, in this case the property (O0=7 ). We note that
after a slight technical modification our method can easily be applied to time-bounded
Until formulas of the form P(p1 U< 1 ¢2).

For a given DTMC D = (S, sinit, P, L), P(OST ¢) computes the probability mass of
the set of all paths through D which lead to any target state within the time period
T. Technically, P(O0=T ¢) is determined based on the computation of the corresponding
transient probability. For a given state s € S and a time point ¢, the transient probability
m(s,t) is the probability to be in s exactly at the time point ¢. Formally,

7(s,t) := Pr{o € Paths® (sini) | cQt = s}.

The procedure for the computation of P(O= ) consists of two steps. First, the stochastic
model checker renders all target states absorbing, i.e. for each target state s all outgoing
transitions are ignored and a self loop with transition probability 1 is added to s. Second,



the model checker computes the transient probability of all target states at the time point

T as follows:
Prob(OST @) := Z?T(S,T) (3)
skEp

Note that in the modified model the system can never leave a reached target state be-
cause all target states have been made absorbing. We refer to the probability defined in
Equation 3, i.e. the probability of satisfying the PTR property, as the timed reachability
probability. Occasionally it is required that the timed reachability probability is bounded
by an upper or a lower bound. In these cases a bounded version of the operator P is used,
e.g. P<p or P>,. We use the terms upwards and downwards bounded PTR property to refer
to a PTR property with a bounded P operator.

Diagnostics for PTR Properties. The verification of a given PTR property relies on the
analysis of paths leading to target states within the given time period, as Equation 3 and
the definition of 7w given above highlight. Thus, the developer would surely be interested in
such paths when she or he is debugging the model with respect to a given PTR property.
We call such paths diagnostic paths. However, a single path has a very low probability mass
compared to the whole probability of the property. In the case of a CTMC, the probability
of a single path is even zero. For this reason, we consider diagnostic traces instead of
diagnostic paths.

Definition 5 For a PTR property P(OST ) specified on a DTMC D = (S, sinit, P, L), a
diagnostic trace R is an element from the set U {R € Traces® (sinit,s) | length(R) < T}.
sk

Intuitively, a diagnostic trace R is a trace from the initial state to any target state with
the length of at most T*. It can be easily shown that Paths(R,T) contains only diagnostic
paths.

3.2 Best-First Search (BF)

Most of the prevalent path directed search algorithms are based on a common optimizing
search strategy called Best-First (BF) [4]. This strategy uses a hash table called CLOSED to
collect information about all explored states which have been expanded, i.e. their successors
have been generated. We call such states closed states. Additionally, it uses a priority queue
called OPEN to store all explored states which have not been expanded yet. We call such
states open states. The queue OPEN is organized as a priority queue which is sorted
according the "quality” of states. This quality is estimated numerically by an evaluation
function f. Amongst others, f usually depends on local state information, e.g. values of the
state variables, and information gathered by the search up to that point. f may also depend
on the specification of the target, in our case the given PTR property, as well as further
knowledge about the problem domain that may be available, in which case we call the
resulting algorithm informed or directed. This knowledge is mostly encoded in a heuristic
function h which is used by the evaluation function f. In each iteration BF expands the
optimal open state s, i.e. the state from OPEN with the best f value, moves it from OPEN
to CLOSED. Each successor state s’ is checked on being a target state. If s’ is a target state,
the algorithm terminates with the solution. Otherwise, s is put into OPEN. Once OPEN is
empty, the algorithm terminates without a solution. The strategy BF* is derived from BF

* If length(R) is greater that T, then Paths(R,T) is empty. Consequently, ¢(R,T) is equal to
Zero.



strategy by a slight modification called termination delay. The termination delay means
that the termination of the algorithm is delayed until a target state is selected for expansion.
In both strategies BF and BF*, the evaluation function f remains arbitrary. Both strategies
do not specify how f is computed. This is a major issue which has a significant impact
on the search effort and the solution’s nature. BF and BF* are instantiated to concrete
algorithms by specifying a concrete evaluation function f or requiring f to satisfy particular
conditions. For instance, the prominent A* algorithm is obtained from BF* if an additive
computation of the path length is used as an evaluation function f [4]. If the evaluation
function f is computed recursively, then BF becomes Z and BF* becomes Z* [4]. More
precisely, in Z or Z*, when a state s is expanded, for a successor state s’, f(s’) is computed
by an arbitrary combination of the form f(s") = F[x(s), f(s), h(s")], where x(s) is a set of
local parameters characterizing s, e.g. the weight of the transition (s, s’).

3.3 Stochastic Directed Search Algorithms

In [3] we have shown how to explore the state space of a given Markov chain using (directed)
search algorithms in order to generate a diagnostic trace for a given PTR property. To this
end, we proposed a stochastic evaluation function for DTMCs based on the stochastic
quality of traces. To be able to deal with CTMCs we proposed an approximation based
on uniformization (see Section 2.1). To facilitate understanding the algorithms used in this
approach we briefly recall, in this section, the algorithms which we used in [3].

Stochastic Evaluation Function. The search algorithm spans a tree called search tree. For
each explored state s there exists exactly one trace R leading from the initial state to s.
We define a new function v as follows:

v(s) = w(Rv 1), (4)

where 7' is the time bound in the considered PTR property and # is as defined in Equation 2.
Additionally, we expect a heuristic function h which estimates the stochastic quality of the
optimal diagnostic trace starting in the current state, i.e. the sate we are computing the f
value for. More precisely, for a given state s, let R* be an optimal diagnostic trace starting
in s, i.e. R* is optimal over the set of all diagnostic traces starting in s (see Definition 4).
h(s) estimates the stochastic quality of R*, i.e. the value 9(R*,T), which means that we
act as if s were the initial state. Note that h(s) can only give a heuristic estimate based on
the description of s, information gathered by the prior search and general knowledge about
the problem. Although we can not give a general definition of h because it is application
dependent, we proposed in [3] a method to obtain heuristic functions starting from given
estimation for atomic state propositions.

The algorithms Z and Z* used in our approach use the product of v and h as an
evaluation function f. Formally, f is defined as follows:

f(s) :=(s) - h(s). ()

Equation 4 might induce the impression that one has to traverse the trace from a given
state up to the initial state in order to compute « for the given state. This is surely not
the case. The computation is performed using information which we have gathered during
the prior search and attached to the predecessor of the state which we are computing the ~
value for. More concretely, we mark each open state s with a vector n’/(s) which gives the
transient probabilities of s restricted on the trace from the initial state to s for the time



from 0 to T. When s is expanded, for any successor state s, v(s’) is computed according
the following expression:

v(s") = P(s,s) - iw'(s, k).
k=0

Altogether, f is computed recursively as follows (c.f. Section 3.2):

In order to illustrate during our later experimental evaluation the advantage of using
informed search approaches we introduce two auxiliary algorithms. They are derived from Z
and Z* by omitting heuristic estimate function A in the evaluation function f,i.e. f := . As
we can observe from Equation 4, v depends only on local state information and information
gathered by the prior search. We call the resulting algorithms undirected Z (UZ) and
undirected Z* (UZ*). If we use BF with just h, as described above, as an evaluation function,
we get a greedy algorithm. The optimality of this algorithm is not guaranteed in general.
However, it has usually a very good performance in terms of runtime as well as memory
consumption. In the remainder of the report, we refer to this algorithm simply as Greedy.

4 Extended Directed Search Algorithms

In this section we present a search strategy which extends the algorithms presented in our
precursory work [3] and and which we discussed in Section 3. For a given PTR property,
the new strategy makes it possible to generate not only one diagnostic trace but a set of
diagnostic traces. Using the extended algorithms we primarily address the following three
issues:

1. Cycles: Cycles in the state transition graph of the model significantly influence the timed
reachability probability. Using the extended algorithms we are able to accommodate
cycles in the solution.

2. Under-Approximation: The selected DiagMC incrementally grows and its probability
mass gradually increases during the search process. Hence, it under-approximates the
failure behavior of the original model.

3. Diagnostics: The DiagMC delivered by the algorithm consists of crucial diagnostic
traces which are pivotal for debugging.

Before we discuss each of these three issues in details in Sections 4.2, 4.3 and 4.4, we are
going to introduce the new algorithms in Section 4.1.

4.1 Extended Best-First Search (XBF)

We extend the Best-First strategy (BF) to a new strategy which we call Extended Best-
First (XBF). The primary aim of this extension is to select a reasonable set of diagnostic
traces which approximates the relevant behavior of the model, with respect to a given PTR
property, from below. This set is helpful in diagnostics and can be used as a counterexample
in the case of upwards bounded PTR properties. Algorithms based on BF explore the state
transition graph of the model spanning a tree called traversal or search tree. Consequently,



in the explored part of the state space, each state has exactly one parent. This excludes the
possibility to accommodate cycles in the solution. Hence, the solution space is restricted to
forward diagnostic traces. The idea is to develop a directed search strategy which explores
the state transition graph of the model using a subgraph. We thus allow an explored state
to have more than one parent. Additionally, XBF is designed so that it is able to select
more than one target state. XBF is mainly obtained from BF by three modifications.

1. For each state we record all parent states which we find during the search. Therefore,
we replace the single parent reference used in BF by a list PARENTS containing all
parents detected by the search.

2. Additionally to OPEN and CLOSED, XBF maintains a list TARGETS which contains
a reference for each target state encountered during the search.

3. XBF does not terminate when it finds the first solution. It continues the search for
further solutions until the whole state space is processed or termination is explicitly
requested.

The pseudo code of XBF is given in Algorithm 1. In the body of the while-loop (starting
at code lines 3), there is no statement which directly causes a termination of the loop. Thus,
the loop will run until the condition ”OPFEN is empty or termination is requested” is fulfilled.
OPEN becomes empty when the state space is completely explored. The termination can
also be explicitly requested using an arbitrary external condition which we refer to as
the external termination condition. An example for that is that the number of the found
diagnostic traces or the probability mass of the found solution exceeds a given bound. The
if-statement starting at line 7 is used to detect new diagnostic traces. If the considered state
s’ is a target state or it is known, from prior search, that a target state is reachable from s’,
then we know that a new diagnostic trace is found. In this case, all known ancestor states of
s" are marked as solution states. The code line 10 is useful to gather any information needed
for the external termination condition, for example the number of found diagnostic traces
is increased or/and the probability mass of the solution can be updated. Additionally, if s’
is a target state, then it is also added to the TARGETS list. For each explored state s, a
list PARENTS is used to keep pointers to all known parents of s (c.f. code lines 13, 14 and
16). Consequently, we are able to record all found traces leading to s including cycles.

Note that the stochastic evaluation function f from Equation 5 is defined based on the
assumption that the explored part of the state transition graph is a tree, c.f. the definition
of v in Equation 4. This is not the case for XBF. Strictly speaking, we should redefine the
function f taking into account that the explored state space is not a tree but a subgraph
of the whole state space. Consequently, for a given state s, when a new trace leading to
s is found, we should recompute f(s) and correct the transient probability vector 7’(s)
taking this trace into account. To do this, the old vector 7/(s) is needed. Therefore, we
would have to store the vector 7’ not only for open but also for closed states. Additionally,
7'(s) was used to compute the transient probabilities of the successors of s. Thus, the
whole explored part of the state space rooted at s would have to be re-explored in order to
recompute 7’ for all states in that part. This would drastically decrease the performance
of the algorithm in terms of both memory consumption and runtime. Therefore, we keep
the definition of f based on the tree formed by the optimal traces. For each explored state
s, let Tracesegpi(Sinit, ) be the set of explored traces from s, to s. We slightly modify
the definition of v as y(s) := ¢¥(R,T), where R € TraceSezpi(Sinit,s) is an optimal trace
over Tracesezpl(Sinit, s). Consequently, we reopen a state only if a better trace leading to
it is found.

When the search algorithm terminates the solution is constructed using the if-statement
at line 20. In our application, this step includes back tracking the pointers from all tar-



Data: Safety property ¢, the initial state sini: and a state transition relationship
Result: A solution if any target state is reachable

Initializations: OPEN « an empty priority queue, CLOSED < an empty hash table,
TARGETS « ( ;

Insert s;nit into OPEN ;

while OPEN is not empty and termination is not requested do

=

2
3
4 Remove from OPEN and place on CLOSED the state s for which f is optimal ;
5 Expand s generating all its successors ;
6 foreach s’ successor of s do
7 if s’ is a target state or s’ is marked as a solution state then
8 if s’ is a target state then Insert s’ into TARGETS ;
9 Back track all pointers from s” up to sinit marking each touched states as a
solution state ;
10 Signal a new diagnostic trace ;
end
11 Compute f(s') ;
12 if s’ is not already in OPEN or CLOSED then
13 Attach to s’ a new list PARENTS ;
14 Add a pointer to s into PARENTS of s ;
15 Insert s’ into OPEN ;
end
else
16 Add a pointer to s into PARENTS of s ;
17 if the newly computed f(s') is better than the old value then
18 Replace the old value of f(s’) by the new one ;
19 if s’ is in CLOSED then Reopen s’ (move it to OPEN) ;
end
end
end
end
20 if TARGETS is not empty then
21 | Construct the solution
end

22 Exit without a solution.

Algorithm 1: Pseudo code of Extended Best First (XBF).

get states up to the initial state. Additionally, an extra absorbing state sink is added to
substitute the remaining part of the model. Furthermore, for each state s contained in the
solution, all outgoing transitions of s, which are not contained in the solution, are redi-
rected to the sink. It is easy to show that the final result is a Markov chain. We call it the
diagnostic Markov chain (DiagMC).

As mentioned before, the step of signaling a new trace at line 10 is used to gather
information which is needed for the external termination condition. Hence, we can cause a
termination delay, if this step is delayed until a target or a solution state is chosen to be
expanded. Similar to BF*, we call the derived strategy XBF*. Similar to Greedy, Z, Z*, UZ
and UZ*, we obtain XGreedy, XZ, XZ*, XUZ, XUZ* by modifying the evalution function
f as descriped in Section 3.3. Note that XUZ and XUZ* are undirected algorithms. We
consider them in this report only to illustrate the advantage of using a heuristic function.

Example 5. Figure 2 shows a simple transition system. We can view it as the transition
system of a DTMC. We assume that the model contains only one target state which we



labeled by X. The figure illustrates the incremental growth of the selected solution. At
some point of the search the algorithm will find a diagnostic trace, for instance the one
highlighted by bold lines in Figure 2 (a). If the algorithm is not explicitly stopped, it will
continue to find more diagnostic traces. After some iterations the solution will grow into
the subgraph highlighted in Figure 2 (b). The largest solution which can be found is given
in Figure 2 (c). At the end of the algorithm, the solution is transformed into the diagnostic
Markov chain illustrated in Figure 3. We refer to the DiagMC obtained from the largest
solution as the complete DiagMC.

Dy ity 2

Fig. 2. Incrementally selected solution Fig. 3. The DiagMC re-
sulting from Fig. 2 (c)

4.2 TImpact of Cycles

To illustrate the effect of cycles on the timed reachability probability, we consider, again,
the traces R; and Ry from Example 3. Obviously, Rs, including the cycle sg — s1 — s,
has a higher probability mass than R;. Thus, we would expect our algorithm to deliver
Ry as a solution. However, this is very difficult to realize. One reason for that is that
prevalent search algorithms based on BF traverse the graph in the form of a traversal tree,
i.e., each state has exactly one parent. As a consequence, cycles can not be included in the
solution. If we enable the algorithm to accommodate cycles we have to allow states to have
more than one parent. However, the more involved reason is the evolving complexity of the
computation of f, as mentioned in Section 4.1. We try to make this point clear using the
following example.

Ezample 6. Again, we consider the DTMC D given in Example 1. After the expansion of
so, the following transient probability vectors are assigned to the states sy and s1:

(1a
(07

' (s0)
7'(s1)
By the expansion of sj, sg and sy are generated. On the one hand, 7'(s1) is used to
compute 7’(s2) = (0,0,0.1,...,0) and the cycle sg — 51 — so is detected. We know now
that a part of the probability is circulated back to sg. So, the vector 7/(sp) has to be
corrected to (1,0,0.9,0,...,0). However, the vector 7’/(so) was used in the computation of
7'(s1). Hence, we have to reopen the state sg in order to correct the vectors 7’(s1). Then,

s1 also has to be reopened in order to correct 7’(s2). We have to repeat this procedure
until the vectors 7’(sg), 7'(s1) and 7’'(s2) are not changed any more.

0,
1

)

0,...,0)
0,...,0)



As Example 6 illustrates, we might have to repeat the search linearly in the number
of cycles and the time bound 7. This would drastically decrease the performance of the
algorithm in terms of both memory consumption and runtime. In order to accommodate
cycles while avoiding these excessive computational costs, XBF uses the following strategy.
For a state s, if a new parent of s is detected, XBF records this information adding a
reference of the new parent into the PARENT list of s. However, s is only reopened, if the
newly detected trace carries a higher probability than the old one. In Example 6, f(so)
computed regarding the newly detected trace < sg, 1,50 > is (< S0, 51,50 >,4) - h(so) =
0.9 - h(sp) is less than the old value ¥(< so >) = 1.0 - h(sp). Thus, the vector 7'(sg) will
not be corrected and sg will not be reopened, although the cycle sy — s1 — sg is included.

4.3 Under-Approximation of Timed Reachability Probability

An important contribution of this work is that the timed reachability probability is ap-
proximated from below when using our extended algorithms. As mentioned in Section 4.1,
the probability mass of the selected solution incrementally grows during the search process
(see Example 5). Certainly, the probability mass of the solution highlighted in Figure 2 (c)
is not smaller than that of the solution given in Figure 2 (b). To show this fact we reason
as follows: The probability mass of the solution is the probability mass of the set of diag-
nostic paths induced by all traces contained in the solution. All diagnostic paths which are
possible in (b) are also possible in (c). Hence, the set of diagnostic paths induced by the
solution from (b) is contained in the set of diagnostic paths induced by the solution from
(c). Similar reasoning can be used for the solution from (a) and (b).

The delivered DiagMC under-approximates the relevant behavior of the original model.
The complete DiagMC, i.e. the DiagMC obtained from the largest solution, e.g. the DiagMC
given in Figure 3, contains all diagnostic paths of the original model. As a consequence,
checking the property on the complete DiagMC will deliver the same result as checking
it on the original model. Normally the complete DiagMC consists of only a small portion
of the complete model. Thus, checking the property on the complete DiagMC can be
performed much faster than checking it on the original model. In many cases it is even not
required to determine the complete DiagMC for the purposes of debugging or generating
counterexamples.

Counterexamples. If the PTR property which we are interested in is upwards bounded,
then our method can be used to generate a real counterexample. In this case a DiagMC
is computed whose probability is not smaller than the given upper probability bound. For
instance, in Example 5, if the probability mass of the solution from Fig. 2(b) is higher than
the bound given in the property, then the computed DiagMC suffices to show the violation
of the property. It can also be used as a counterexample. Hence, the search algorithm
can be stopped at this point. In order to repair the model, the developer has to consider
the computed DiagMC. Note that it is not possible to decrease the total probability to be
under the given upper bound without applying changes to this part of the model. Note that
during the search we are unable to compute the accurate probability mass of the currently
selected DiagMC. We can only compute an approximated value which is not higher than the
accurate probability mass. The reason is that we avoid refreshing the transient probability
vectors when a cycle is detected (see Section 4.2. In the case of a CTMC, the approximation
using uniformization is another reason which prevents us from computing the accurate
probability mass of the selected DiagMC. As a consequence, sometimes the algorithm runs
longer than required for under-approximating an upwards bounded PTR.



4.4 Diagnostics of PTR Properties

As we mentioned in Section 3.1, our main goal is to obtain diagnostic traces in order to
facilitate diagnostics and debugging of PTR properties. Each diagnostic trace represents
a potentially large set of diagnostic paths and it has a meaningful probability mass which
is not equal to zero. A diagnostic trace with a higher probability mass is more essential
in the debugging process than the one with a lower probability mass. In our precursory
work we presented a method to select one forward diagnostic trace R which carries a
large amount of probability. We suggested be used in debugging the system and called it a
counterexample to the considered PTR property. Obviously, one trace might be insufficient
to be a real counterexample to a PTR property. Even for diagnostics the developer should
consider more than one critical diagnostic trace. However, in [3] we have developed the basic
techniques for the exploration of state spaces of stochastic models using directed search
strategies. The advanced algorithms presented in this work make it possible to deliver more
than one critical diagnostic trace represented in form of a diagnostic Markov chain.

5 Case Studies and Experimental Results

We have implemented our algorithms in Java 5.0 based on the Data Structures Library
(JDSL) [17,18]. Our algorithms use the PRISM Model Checker [8] which is designed to
analyze stochastic models. The DTMCs and CTMCs that we use in our experiments are
modeled in the PRISM modeling language. We use the PRISM Simulation Engine in order
to generate the model state spaces on-the-fly. Our search algorithms work on the thus
generated state spaces. Whenever precise numerical stochastic model checking is required,
for instance in order to compute total model probabilities, it is performed by the PRISM
Model Checker. We next present two case studies which we used to experimentally evaluate
our method. Space limitations do not permit us to present the experimental results in full.

5.1 Case Study 1: Query Processing System

In this section we consider a very simple model for a query processing system given as a
CTMC in PRISM. The system receives queries from clients and puts them into a queue
with a maximal capacity C' queries where they await processing. The system works in two
different modes. In the secure mode, the processing of the queries is safer but much slower
than it in the normal mode. Hence, the secure mode is switched on only if it is necessary.
The system is illustrated in Figure 4 in the form of a stochastic Petri net. The initial
marking of this Petri net is as follows: C tokens in Free-Slots, one token in Intact and one
token in Ready. We assume the following transition rates:

A = 0.1 is the rate to receive a new query

p1 = 3.0 is the rate for processing a query in the normal mode.

pn2 = 1.0 is the rate for processing a query in the secure mode.

% =1.0-107° is the rate for an attack to be successful

v =9.0-1077 is the rate for an attack to be detected and, consequently, the secure mode is enabled.
& = 5.0 is the rate to pick a query from the queue for processing.

Two properties are interesting in this model.

1. QPS-Overload: What is the probability that the system is overloaded within a particular
time period 177

2. QPS-Attacked: In the case of an attack, what is the probability that the system gets
infected within a particular time period T5 before it switches into secure mode?



lSO

Attacked

Fig. 4. SPN of the Query Processing System Fig.5. The complete DiagMC in the Query
Processing System

Figure 5 shows the complete DiagMC for this property in the case that C' = 3. The numbers
by which the states are labeled indicate the number of requests in the queue.

Our experimental results showed that while Z* delivers only one diagnostic trace <
S0, 81, S2, 83 >, which is represented in the figure by the state labels sg to s3, XZ* delivers
a set of diagnostic traces. For instance, if we first restrict the search to select only three
diagnostic traces, XZ* delivers the DiagMC indicated by bold lines in Figure 5. If we allow
the algorithm to run to the end it will select the complete DiagMC given in Figure 5 which
reflects the complete failure behavior of the model. It is easy to see from this DiagMC
that we have to increase the rate v if we want to reduce the likelihood of an attack to
be successful. This means we have to speed up the activation of the security component.
Another approach is to perform a security check on the queue to detect attacks before
they reach the processor. This results in an extra transition leading from Ready state to
Readyse. in Figure 4. It is mapped to a transition from Ready to Sink in the DiagMC in
Figure 5.

We run the experiments for both properties with the time bounds 77 = 50 and 75 = 20.
As a heuristic estimate, we tried to guess the most direct transition sequence to reach
a target state and over-approximated the branching probability along this sequence. For
example, for the QPS-Overload we used the following heuristic function:

h(s) = (5)0

where e is an estimation of the minimum state exit rate along the sequence and ¢ the
current size of the queue. This heuristic is not admissible, but it is easy to compute and
yields acceptable results, as we will see below.

Table 1 gives an overview of the size of the model for different queue capacities. We
bounded the search algorithms to arbitrary numbers of traces (see column B in Table 1)
in order to emulate the real usage. Tables 5 to 6 show the results for the QPS-Overload
property.



cC| s T B || 5[10] 20| 50|100] 200| 500

5 30| 54| 10 Greedy 5|10 20| 50{100| 200 1
10 55| 104| 10 Z 5|15| 38(107|207| 417 1
20 || 105| 204| 20 UZ 11]|41| 89|212|438| 981|1042
50 || 255| 504| 20 7 6(17| 41{109|209| 429 1
100|| 505|1004| 50 uzr 15|46| 94|217|443| 986 1
200|{1005({2004|100 XGreedy|[16{21| 38| 68|137| 271|1042
500|(2505(5004|200 X7 23(36| 58(126|256| 517 1
XUZ 29(54/104(240(504|1004{1042
C= queue capacity, S= states, T= X7* 23138] 60(128/258| 528 1
transitions and B= bound on the XUZ* 29(54|104(244|504|1004|1042
number diagnostic traces
Table 2. QPS-Overload: Search itera-
Table 1. QPS: Model statistic tions
|| 5/10] 20| 50|100] 200| 500 || 5/10]20] 50]100|200] 500
Greedy |[10{20] 40({100|200| 400 1 Greedy |[12(22]42(102|202{402|1002
Z 10]|24| 58|118|217| 427 1 Z 6| 6| 6| 6| 6| 6 6
UZ 20(50| 97(220(446| 988(1042 UZ A I A 7
7" 10|25| 58|118|217| 437 1 A 6| 6| 6| 6| 6| 6 6
uzr 24152|101(224[450| 992({1042 uzr 20(20]20| 20| 20| 20{ 20
XGreedy|[20[30| 55[115(229| 455 1 XGreedy|[17]28(47|111|224(449|1088
X7 24143| 64(132(262| 522 1 XZ 17/18]18| 29| 64|139| 289
XUZ 29(54|104(247(504|1004(1042 XUZ 20(20(20{ 40]|122(249| 489
X7 24(43| 66(134|264| 534 1 X7 17/18]18| 29| 64|139| 289
XuUz* 29(54|104(251(504|1004{1042 XUZ* 30(31|31| 55|138(263| 501
Table 3. QPS-Overload: Number of explored Table 4. QPS-Attack: Number of ex-
states. plored states.
I 5| 10| 20| 50| 100 200[500
Model 1.62E-6|9.07E-14|2.24E-24|3.87E-56|1.96E-117|4.41E-266| 0.0
Greedy ||1.47E-7|4.25E-16|3.56E-33|2.10E-84|8.50E-170 0.0 -
7 1.47E-7|4.25E-16|7.32E-27|6.87E-59|1.04E-119(|4.12E-268| -
UZ 1.47E-7{1.18E-15(1.27E-27|2.42E-59(8.20E-120{4.14E-268| -
7" 1.47E-7|4.25E-16|7.32E-27|6.87E-59|1.04E-119(|4.12E-268| -
uzr 1.47E-7|1.18E-15|1.27E-27|2.42E-59|8.20E-120(|4.14E-268| -
XGreedy||1.57E-7|4.26E-16|4.98E-33|2.93E-84|5.96 E-169 0.0 -
X7 1.35E-6|5.63E-14|1.80E-24|2.88E-56|8.49E-118|3.64E-266| -
XUZ 1.29E-6|8.37E-14|2.02E-24|3.16E-56|1.96E-117|4.34E-266| -
X7 1.62E-6|7.23E-14|1.99E-24|2.88E-56|8.71E-118|4.29E-266| -
XUZ* 1.62E-6(9.07E-14(2.24E-24(3.87E-56|1.96E-117|4.37TE-266| -

Table 5. QPS-Overload: Timed reachability probability



| 5[ 10] 20| 50] 100] 200] 500 | 5] 10] 20 50| 100] 200 500

Prism 3.4| 5.1] 7.4/13.9/123.0/40.6/93.5  Prism [|3.40]5.50(8.00[14.20[23.60[41.50]94.10
Greedy | 0.1 0.3 0.5| 1.3 2.5| 5.1} 0.0 "Greedy [0.15/0.28[0.54] 1.3 2.57| 5.11[12.72
Z 52| 9.5124.1124.1|23.1|123.1| 1.0 7 1.31]1.31]1.31| 1.31| 1.31| 1.31] 1.31
UZ 10.4(11.7(11.7{11.7|14.2|21.6|22.3 U7%Z 1.7311.73|1.73| 1.73| 1.73| 1.73| 1.73
z 5.2| 9.5(24.1124.1|23.1|123.5| 1.0 z* 1.31]1.31]1.31| 1.31| 1.31] 1.31] 1.31
uz* 10.5(11.7(11.7{11.7|14.3|21.7|22.6 UzZ* 4.33(4.3314.33| 4.33| 4.33| 4.33| 4.33
XGreedy|| 0.3| 0.4 0.8 1.4 3.0| 6.1] 0.0 XGreedy|[0.24/0.39[0.64| 1.48| 3.0| 6.03|14.41
X7 6.3/10.7|23.1|123.1|123.1|23.1| 1.0 X7 1.47(1.47|11.47| 1.65] 2.2| 3.3| 5.54
XUZ 10.5/11.7|11.7|111.7|115.2|123.6|24.3  XUZ 4.34|4.34(4.34| 4.99| 5.15| 7.14[11.29
XZ* 6.3|10.7|23.1(23.1{23.1{23.1] 1.0 X7* 1.471.47|1.47] 1.65| 22| 3.3| 5.54
XUz* 10.5|11.7{11.7{11.7[15.2{23.6|24.3 XUZ* 4.43(4.9114.91| 4.99| 5.4| 7.36/11.43

Table 6. QPS-Overload: Memory consump-  Lable 7. QPS-Attack: Memory consumption in
tion in KB KB

Table 5 shows the timed reachability probability for the property QPS-Attacked mea-
sured by PRISM on the whole model as well as on the DiagMCs delivered by the various
algorithms indicating the quality of the various solutions. When comparing the different
algorithms in terms of solution quality, we observed that the solutions produced by the ex-
tended algorithms, especially XZ* and XUZ*, have a very high probability mass compared
to the solutions of the basic algorithms. In some instances their probability masses were
very close to the total probability measured for the model by precise model checking. This
highlights the the effect of the guided under-approximation that we perform. We also ob-
served that the non-optimal (respectively non-admissible) greedy algorithms Greedy and
XGreedy delivered solutions with very low probabilities. However, these algorithms had
the best computational performance in terms of both memory consumption and runtime
measured in the number of search iterations. This can be observed in Tables 2 and 3 which
show the number of search iterations and the number of the states explored by the algo-
rithms. Generally, we observed that the directed algorithms Greedy, Z, Z* , XGreedy, XZ
and XZ* explored much less states and made much less search iterations than the undi-
rected ones UZ, UZ* |, XUZ and XUZ*. In the case of unreachability of target states, the
directed algorithms detected that much earlier than the undirected ones, c.f. columen 500
in Tables 2 and 3. Table 4 show the number of explored state during checking the property
QPS-Attacked.

The memory consumption of the algorithms is given in Table 6 for the QPS-Overload
property and in Table 7 for the QPS-Attack property. The most space required by the search
algorithms is, actually, used to store the transient probability vectors of open states. This
explains why XZ*, in some cases, consumes more memory than XUZ*, although it explores
much less states, c.f. Tables 3 and 6 columns 20, 50 and 100. Both greedy algorithms do
not need to store these vectors because they just use the heuristic function h to estimate
the quality of states. Consequently, the memory consumption of both greedy algorithms
is minimal in the most cases. In order to give the reader a reference of the costs required
to generate diagnostic traces using our algorithms, we give in the tables, additionally, the
memory consumed by PRISM for the complete Model Checking of the model. However,
this should not be understood as a comparison between both approaches because, while
PRISM performs an accurate Model Checking, our method, primarily, aims to generate
diagnostic information.



5.2 Case Study 2: A Workstation Cluster

The second comprehensive case study that we conducted was a dependable cluster of work-
stations as first presented in [19]. It represents a system consisting of two sub-clusters con-
nected via a backbone. Each sub-cluster consists of N workstations with a central switch
that provides the interface to the backbone. Each of the components of the system (work-
stations, switches and backbone) can break down randomly. In order to provide minimum
quality of service (QoS), at least k (< IN) workstations have to be operational connected to
each other via operational switches. The system is modeled as a CTMC. For the maximal
number of workstations per cluster (=256) the CTMC consists of about 2.3 million states.
We are interested in the likelihood that the quality of service drops below the minimum
within a particular time period. We ran experiments on models for different N values and
restricted the search to arbitrarily chosen number of diagnostic traces, c.f. Table 8. The
corresponding results are given in Tables 9 to 12.

The DiagMCs that our analysis computes indicate the most critical portion of the failure
behavior of the system. Their probability masses come very close to the full probability
mass measured on the complete model, c.f. Table 9. In most cases, the directed search
algorithms outperformed the undirected algorithms in terms of computational cost and
memory consumption, c.f. Tables 10, 11 and 12. However, we observed that the performance
of the undirected algorithm XUZ is often similar to the performance of XZ*. Also, the
quality of solution delivered by XUZ is in some cases higher than that of the solutions
delivered by XZ*. The reason for that is that the used heuristic function is probabily not
informative enough to guide the search efficiently to the target. The use of the greedy
algorithms further reduces the computational costs, at the expense of a loss of solution
quality in the order of multiple orders of magnitude.

6 Conclusion

In this report we have presented a heuristics guided method to generate diagnostic in-
formation for the debugging of probabilistic timed reachability properties on stochastic
models. For this purpose we have developed an advanced heuristic search strategy called
XBF which extends the framework presented in [3]. XBF is instantiated to concrete algo-
rithms, namely XGreedy, XZ and XZ* as well as the undirected variants XUZ and XUZ*.
We have evaluated our method using a number of experiments on two case studies. Over-
all, the experiments showed that 1) the DiagMCs that have been computed are meaningful
and useful as diagnostic information in the analysis of the model, 2) the solution delivered
by the algorithms XUZ, XZ* and XUZ* have high stochastic quality, i.e. they have high
probability masses, and 3) in almost all situations the directed algorithms outperformed
the undirected ones in terms of computational cost.

Currently, we are investigating how the probability vectors can be interpolated so that
we can avoid to store the complete transient probability vectors during the search in order
to reduce overall memory consumption of the method. We are also studying visualization
techniques for state spaces in order to facilitate comprehension of the diagnostic Markov
chains that are provided to the user. As future work includes the application of our method
to Markov decision processes which include the concept of non-determinism that is essential
in analyzing concurrent stochastic models.

Acknowledgments. We thank Marta Kwiatkowska and Holger Hermanns for enlightening
discussions on the subject of this work. We thank also Dave Parker for his advice on



I 4| 16| 64] 256
Model _[[3.61E-6[3.24E-6]3.264E-6[3.35E-6

N | 5| 1B Greedy ||5.92E-85.26E-8|3.453E-8|1.15E-8

4 820 3616) 10 Z 5.92E-8|5.26E-8|3.453E-8|1.15E-8

16 || 10132)  48160| 20 Uz 5.92F-8|5.26E-8|3.453E-8|1.15E-8

64 || 151060 733216 50 7* 1.47E-6|1.28E-6|3.453E-8|1.15E-8
256]|2373652(11583520|150 uz* 1.47E-6|1.28E-6|7.454E-7(1.49E-7

N= number of workstations in each cluster, XGreedy| 5.93E-8/5.27E-8)3.464E-8| L. 16E-8
XZ 3.44E-6(3.09E-6|3.464E-8(8.09E-7

S= states, T= transitions and

B=bound on the number diagnostic traces XUZ 3.10E-6)2.99E-6)3.012E-6)2.41E-6

Xz* 3.56E-6(3.20E-6|3.464E-8|8.28E-7
Table 8. WSC: Model statistic Xuz* 3.57TE-6(3.24E-6|3.260E-6|3.31E-6

Table 9. WSC: Timed Reachability Probability

|| 4]16] 64]256 | 4] 16| 64]256
Greedy 20 2 2| 2 Greedy 11} 11f 11| 11
Z 6| 2| 2| 2 Z 30 11} 11} 11
Uz 6| 6| 13| 27 Uz 30| 30| 61121
7 26(14] 3| 3 7 98| 54f 11| 11
uz” 33|54| 90231 uz* 104|166|268|715
XGreedy||13|28(110(223 XGreedy|| 34| 67]223|508
X7 13(19| 96|242 X7 53| 67(220|486
XUZ 14(22| 80144 XUZ 59| 90(263(483
X7 26|26| 98|242 X7 98| 91{220|486
XUZ* 33|56(162|321 XuUz* 104|167|433(920

Table 10. WSC: Search iterations Table 11. WSC: Number of explored states.

| 4] 16 64| 256
Prism 53.80(414.90|5077.20({62736.00
Greedy 0.48| 0.48 0.48 0.48

Z 20.61| 14.86| 14.89 7.68
UZ 20.61| 39.64| 79.52 80.53
z" 63.0| 67.85| 14.89 7.68

uz* 64.83]189.37| 306.32| 419.55
XGreedy|| 1.49] 2.94 9.88 22.34
XZ 34.52| 79.65| 221.1| 217.06
XUZ 38.81|112.61| 304.88| 293.12
Xz* 63.07/107.88| 221.1| 217.06
Xuz* 64.93| 189.6| 453.71| 521.38

Table 12. WSC: Memory consumption in KB




choosing appropriate case studies. This work was carried out in the course of the DFG
funded research project DiRePro.
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