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Abstract

We propose a model for synaptic plasticity according to the Spike
Timing Dependent Plasticity (STDP) theory using Linear Hybrid Au-
tomata (LHA). We first present a compositional LHA model in which
each component corresponds to some process in STDP. We then ab-
stract this model into a monolithic LHA model in order to enable
formal analysis using hybrid model checking. We discuss how the avail-
ability of an LHA model as well as its formal analysis using the tool
PHAVer can support a better understanding of the dynamics of STDP.

1 Introduction

Advances in the area of system biology have led to a large number of complex
biophysical and mathematical models of neuronal activities. An overview
can be found in [10]. Following a recent trend in algorithmic systems biology
[21], we propose to use formal methods in the modeling of neurological sys-
tems aspects. The particular method that we use is that of Linear Hybrid
Automata (LHA) [1] and symbolic reachability analysis for LHA as imple-
mented in the hybrid model checking tool PHAVer [7]. It is an objective
of this paper to illustrate how this type of formal methods usage can help
to document system behavior, to explain experimentally observed behavior,
and to predict behavior that has not yet been experimentally explored, in
the domain of neurological systems biology.

In our analysis we consider the field of biological systems modeling using
the example of an existing phenomenological model of synaptic plasticity,
in particular Spike Timing Dependent Plasticity (STDP) [17][18]. Synaptic
plasticity goes back to the work of D. Hebb. It postulates the ability of
the brain to strengthen connections between neurons whenever neighboring



neurons are simultaneously active [12]. Synaptic plasticity is thought to play
a key role in associative learning [12]. We present an LHA model for the
exploration and documentation of key system properties. First, exploiting
the compositionality of LHAs, we define a linear hybrid automaton for each
STDP system component, which we then integrate into one hybrid system
model. This compositional modeling approach allows for an easy extension
of the model as well as a more comprehensible, modular presentation of the
system. In a second step, we abstract the model obtained in the first step
further and present a compact model of STDP that is suitable for efficient
model checking. We use PHAVer as a model checking tool and demonstrate
how formal methods can be used to explore salient properties of an STPD
model. We illustrate the modeling power of linear hybrid automata in the
field of biological system modeling, in particular their ability to describe
systems under different point of views: as a transition system based on a
control graph, and as a visualization of the sets of reachable states repre-
senting system dynamics.

Related Work Related to our work is the modeling of the action poten-
tial (AP) of single neurons described in [27]. The authors present an LHA
based model of neuronal action potential. The biological system under in-
vestigation in that work is hence the excitability of single neural cells. The
action potential (AP) itself is caused by a change in the potential in the
cell membrane due to different ion currents flowing through it. An action
potential is only fired after a certain threshold value has been reached. Oth-
erwise, the AP returns to its resting potential. This behavior is called the
bifurcation property of excitable cells, and the authors analyze this behavior
of their model using symbolic reachability analysis. In the related work of
[26], a model the AP of large groups of neurons represented by cycle-linear
hybrid automata (CLHA) is presented. CLHA are a class of LHA that is
based on the repeated execution of a single LHA. Apart from nerve cells,
other biological systems, such as protein concentration dynamics in nerve
cells, have been modeled using hybrid automata [11]. A common feature of
these approaches is that they focus on the exact description of the activities
in the nerve cell. Instead of giving details of the AP or of cell internal pro-
cesses, we abstract from those and concentrate on modeling the effects that
the spikes of the action potential waves in neighboring neurons have on the
synaptic weight change. As a consequence, questions regarding thresholds
and bifurcations do not play a central role in our work.

The approach of [13] uses Pathway Logic (PL) to model neural circuits.
PL is based on rewriting logic as originally proposed by [19]. The model
itself relies on the representation of each neuron as an object with specific
properties. The data type of the objects is an algebraic data type consisting
of a name, a relation and an operation. System specific interaction between



the objects is realized by local transitions between the states given by rewrite
rules. This abstraction enables simulations of the interaction of several
thousand neurons. As opposed to our work, PL based model checking cannot
deal with hybrid systems properties.

Work described in [11] uses MATLAB and the symbolic quantifier elim-
ination tool QEPCAD to compute reachable state sets for models of other
types of biological systems, such as protein concentration dynamics in cells,
given as hybrid automata. The algorithm used in this work to compute
reachable sets for hybrid automata partitions the state space to obtain an
abstract discrete transition system. This enables reachable set computa-
tions that are entirely symbolic and there is no numerical instantiation of
any system parameters. We apply a linear hybrid automata based approach
to build detailed models of the interaction between neighboring neurons,
using explicitly given numerical parameters, which allows for a graphical
visualization of the numerically given results that we obtain.

Paper Organization We first present an introduction to linear hybrid
automata and synaptic plasticity in Section 2. Our LHA model of STDP is
given in Section 3. The analysis of the model is described in Section 4, and
the results of the analysis are discussed in Section 5.

2 Foundations

2.1 Linear Hybrid Automata

Hybrid automata have been introduced by [1] and provide a formal descrip-
tion of the continuous and discrete components of a hybrid system.

Definition 1 According to [1], a hybrid automaton is a siz tuple consisting

of:

A finite set X of real-valued variables. The function v(z) assigns a
value to each variable. The valuation is denoted by the set V.

A finite set Loc of vertices in a control graph called locations. A state
is a pair (I,v) with | € Loc and v € V.

The finite set Lab of synchronization labels.

A finite set E of edges in a control graph, the transitions.

A labeling function Act that assigns to each location | € Loc a set of
activities.

A labeling function Inv assigns to each location | € Loc an invariant

Inv(l) CV.



Definition 2 A hybrid automaton is linear if its invariants and initial states
are given by linear predicates over X, flow predicates by convex linear pred-
icates over the set X of variables and jump relations by linear predicates
XUX'.

Definition 3 For the composition of hybrid systems let Ay =(Loc,X, C,
Flow, Inv, Init), As =(Loc, X, C, Flow,Inv, Init) denote two hybrid systems.
Subsequently the product A1 x A2 of Al and A2 is the hybrid system H, such
that [7, 1]:

e Locy x Locy (Locations)

e X = X3 UXy (Variables), C = C1 UCy (Clocks), Lab = Laby U Lab
(Labels)

o ((li,l2), a1, p(ly,15)) € E, iff
1. %1,611,,111,”1) € E and ((h,12), a2, u(l1 15)) € E, iff (2, az, p2, 13) €
2. a1 =ay=a, oraj; ¢ Laby and ay =7 oray =7, ora; =T and

as ¢ Lab;.

3o p=p1 M p2

o Flow(ly,ls) = Flow (1)||XYX N Flows(ly)|| XX

o Inv(ly, o) = Invi () |X N Inve(I2)||*

o Init(ly,ly) = Inity(I)||X N Inity(lo)||*

Definition 4 Let o and o' denote two states of a hybrid system H. The
state o’ is reachable from the state o', if there is a run of H that starts in o
and ends in o’ [1].

For the computation of the sets of reachable states we use the model
checking tool PHAVer which is based on symbolic computations on the sets
of reachable states using polyhedra. A particular feature of PHAVer is its
use of the Parma Polyhedra Library (PPL) [2] which allows for numerically
exact computations on non-convex polyhedra. In PHAVer, each polyhedron
represents the set of solutions to a finite system of linear inequalities, called
linear constraints [8]. Such a system is given by the invariants and flow
predicates of a linear hybrid automaton, as detailed in section 2.1. The exe-
cution of a hybrid automaton results in continuous changes of the continuous
variables, referred to as flows, as well as discrete state changes, referred to
as jumps. This model of computation allows the observation of the possible
system behavior over time [1]. The state of a hybrid system contains infor-
mation regarding the current location as well as the values for the variables
at any point in time [1]. We use this hybrid system model to investigate the
temporal dynamics of STDP.



2.2 Synaptic Plasticity

The Hebbian rule [12] postulates that connections between neurons can be-
come stronger and more efficient if neighboring neurons are simultaneously
active. This property of networks of neurons is called synaptic plasticity
and could be verified experimentally [24]. Research on synaptic plasticity is
strongly influenced by Hebb’s postulate. As a mechanism of learning and
memory, the plasticity rule proposed by Hebb states that, if the activity of
one neuron drives the activity of another neuron, the connection between
the two neurons is strengthened or a new connection is established [12]. [6]
verified Hebb’s idea: persistent changes of synaptic efficacies are induced
by the simultaneous stimulation of presynaptic and postsynaptic neurons.
The changes can either mean a depression or a potentiation of synaptic
efficacy [24]. The experimental correlates to that theoretical concept are
called long-term potentiation (LTP) and long-term depression (LTD). It is
widely believed that LTP represents an important mechanism for memory
in the brain [5, 14]. All models that are based on Hebbian learning use a
very broad definition of the term learning: it refers to all kinds of synap-
tic changes [10]. The notion of learning that is used here simply refers to
changes of the synaptic weight.

2.3 Spike-Timing-Dependent Models (STDP)

Spike-timing-dependent models of synaptic plasticity describe the change of
the synaptic weight as a function of the relative timing difference between
presynaptic and postsynaptic spike arrival. This interdependency could be
proved experimentally [4, 28]. Spike related synaptic activity consists of pre-
and postsynaptic spike trains. The model proposed by [20] assumes that each
spike train consists of N spikes occurring with constant frequency. The pre-
and postsynaptic spikes show a small time difference At = t,55t — tpre, With
tpre and tp,s denoting the point in time that a presynaptic, respectively
postsynaptic, spike occurs.

2.3.1 A Triplet Rule of STDP

Classical models [23, 16] describe the weight change based on the timing
difference between pairs of neighboring spikes. But these models do not
precisely validate experimental results, e.g., they do not account for fre-
quency effects observed by [25, 22], which reported a stronger potentiation
of the synaptic weight at higher frequencies. According to the work of
[25], synaptic plasticity can be explained better when considering triplets or
quadruplets of spikes. Based on these findings, [20] introduce a model that
explains the change of synaptic weight by taking into account the interaction
of spike triplets, consisting of one presynaptic and two postsynaptic spikes,
or vice versa. The model reproduces the experimental results of [25] and



[22], which show that potentiation processes can be activated by triplets of
spikes and depend heavily on the activation timing. At low frequencies, [20]
report identical results for pairs and triplets of spikes.

2.3.2 Integration of Neuronal Variables

[20] introduce neuronal variables to model presynaptic neuronal events such
as the release of glutamate into the synaptic cleft, or the increase of the cal-
cium concentration through Ca?* channels, which is a postsynaptic event
[15]. [20] define variables 1 and r2 that represent presynaptic events and
the variables 01 and 02 that represent postsynaptic events. They are con-
sidered to be abstract variables in the sense that can be related to any kind
of biophysical quantities of the above type. For instance, let 71 denote the
amount of glutamate released into the synaptic cleft and let ¢,,. denote the
moment of presynaptic spike arrival. Then the value 71 is set to one at the
moment at which the presynaptic spike occurs. During the passage of some
time span 7, the value of r1 decreases to zero. After the next presynaptic
spike, 71 is reset to one. The following function describes the behavior of
the neuronal quantity r1:

rl(t):{ 1 ift =t

L1y else
=

The function can be applied analogously to 02, ol and r2. The values of
r1, r2, ol and 02 are always in the interval [0, 1].

2.3.3 Calculating the Synaptic Weight Change

According to [20], the weight change occurs at the moment of synaptic spike
arrival, which is denoted by the variables t,,.. and t,,s. Let r1 and ol
describe the value of r1 and ol at time ¢p.. and tp.s, respectively, and
let wefght denote the synaptic weight right before a spike occurs. AQL and
A5 are used to represent the values of the negative and positive amplitude
of the synaptic spike of the postsynaptic neuron. When considering spike
triplets, Ag‘ and A3 are used for representing the amplitudes of the second
postsynaptic neuron [20]. It is hence easy to model and analyze the change
of the synaptic weight for pairs or triplets of spikes. By setting A;‘ and Ay
to zero, the model turns into a classical pair based model, [20]. [25] call this
the pairing protocol of STDP.

[20] give an equation for the increase of the synaptic weight. At the
moment of postsynaptic spike arrival, the new value of the synaptic weight
weight is described as follows [20]:

weight = weight + 11 - (A} + Az - 02)



The decrease of the synaptic weight is given at the moment of presynaptic
spike arrival by the following equation [20]:

weight = weight — ol - (Ay + A3 - 02)

The neuronal variables r1, 02, ol and 02 have to be updated after each
weight change in order to capture the exact behavior of the neuronal quanti-
ties. As described in Section 2.1, the definition of a linear hybrid automaton
requires the derivative of the continuous component to be linear. Therefore,
we cannot directly represent the multiplicative terms involving A?{ and Az
in the above equations in an LHA model. In the next section, we first in-
troduce the LHA models for the pairing protocol, and then show how they
can be modified to reflect the effect of spike triplets on the change of the
synaptic weight.

3 LHA Model for STDP

This section describes our approach to model synaptic plasticity using linear
hybrid automata. As explained in section 2.2, the change of synaptic weight
depends on the relative timing difference between neuronal spikes. We start
with the presentation of LHA models considering pairs of spikes, following
the approach of [20].

We define two different hybrid systems for modeling STDP based on pairs
of spikes. The first model that we present is very detailed and based on a
modular design: the neuronal spiking, the decay of the neuronal quantities
and the change in synaptic plasticity are described by separate automata.
The composition of these automata yields the hybrid system for STDP. Then
we introduce a more abstract LHA model that ignores the exact time course
of the neuronal spiking and only triggers the weight change at the moment
that a spike occurs. The benefits and drawbacks of both models will be
discussed at the end of this section. The values of the parameters used for
the hybrid models are adopted from [20]. We use a graphical representa-
tion for the automata. It is based on rectangles to denote the states and
arrows between the states to represent the transitions. To denote the first
derivative of a function, which serves as the continuous component of the
hybrid automaton under investigation, we use the Lagrange notation with
the prime mark.

3.1 Modular Hybrid System for STDP

Our hybrid system for the model of STDP introduced in Section 2.2 is based
on a modular design. We define a hybrid automaton for each key system
property. This allows for a potential integration of additional parameters,
if necessary, and provides an easily comprehensible system model.
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Figure 1: Automaton preSpiking for regular neuronal spiking at a frequency
of 50 Hz with v denoting the voltage in mV, v’ denoting the first derivative of
the flow function and the time elapse t. Up and DOWN label the transitions.

3.1.1 Regular Spiking

First, the behavior of the system towards the repeated occurrence of spikes
must be defined. We assume that the point in time a spike occurs as well
as the number of spikes during a certain period of time constitute the only
interesting values in the context of our model. As suggested by [9], the
spikes can be assumed to occur at a frequency of 50 Hz with a phase shift of
10 ms between the postsynaptic and the presynaptic spikes. The upper and
lower thresholds for the voltage are adapted from [22].

A corresponding hybrid system requires two automata, representing the
presynaptic and the postsynaptic spiking, respectively. For the automata
preSpiking and postSpiking, the set of locations V={Rising, Falling}, the
set of switches E={(Rising, Fulling), (Falling, Rising)} and the finite set
of variables X={v, t}, with v denoting the voltage in mV and ¢ the time
in ms, are defined. The invariants are given with inv(Rising)=5 < v < 30
A t < totalTime and inv(Falling)= 5 < v < 30, the flows are given with
flow(Rising)=v’=0.18-v and flow(Falling)=v’=-0.18 -v. The jump condi-
tions are defined with jump(Rising)= v > 30 and jump(Falling)=v< .
Figure 1 shows the automaton for the neuronal spiking. The arrival of the
spikes at the postsynaptic cleft with a time delay of 10 ms is modeled by a
second automaton called postSpiking. It has the same properties as the au-
tomaton prespiking but implements a 10 ms phase shift. The clock variable
t guarantees the correct timing: in each state the derivative of ¢ is set to 1.
Due to the guard t < totalTime the transition can only be executed as long
as the time elapse does not exceed the time limit totalTime. Figure 2 shows
the regular spiking of the presynaptic and postsynaptic neurons as defined
by the automata preSpiking and postSpiking.
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Figure 2: Regular neuronal spiking at a frequency of 50 Hz and a time delay
of 10 ms between the presynaptic (red) and postsynaptic (blue) spikes.

3.1.2 Modeling the neuronal variables rl and ol

As explained in Section 2.2, the variables r1 and o1 represent not precisely
specified neuronal quantities. The value of r1 is set to one at the moment of
the presynaptic spike arrival and the value of o1 is set to one at the moment
of postsynaptic spike arrival. According to [20], the values of the neuronal
variables 1 and ol decrease to zero during a time interval of 16.8 ms (1)
and 33.7ms (o). Figure 3 shows the automata for the neuronal variables
rl and ol. The invariants and guards for the single states r1 and ol are
given with inv(r1)=rl > 0, inv(o1)=0l > 0 and jump(ri)=rl < 0 and
jump(ol)=0l < 0. The flow functions are defined with flow(r1)=r1’=-
1/16.8 and flow(ol)=01"=-1/33.7.

3.1.3 Modelling the Change of Synaptic Weight

The weight function suggested by [20] is used for the automaton that models
the change of the synaptic weight. The finite control graph G = (V, E) is de-
fined as follows: V' = {Decrease, noChange, Increase} and E = {(noChange,
Increase), (noChange, Decrease), (Decrease, noChange), (Increase, noChange)}.
We define the finite set of variables X={z, w} with = denoting the elapsed
time and w denoting the weight change. R1 and ol are input variables from
the automata r1Aut and ol Aut. The invariants are given with inv(Increase)=
x < 1, inv(Decrease)= = < 1 and inv(noChange)=True. The flow condi-
tions are defined with flow(noChange)=w’=0, flow(Increase)=w’=0.0046-r1
and flow(Decrease)=w’=—0.003 - 0l. The guards are given with (Increase,
noChange) = x> 1 and Decrease, noChange = x> 1. Figure 4 shows the
graphical representation of the automaton for the weight change with w’ de-
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Figure 3: Automata for the neuronal variables r1 and oI, with tr and to
denoting the time elapse and 7! and ol representing arbitrary neuronal
quantities.
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Figure 4: Automaton for the weight change, with w’ denoting the first
derivative of the weight function,  denoting the time elapse and synchro-
nization labels INc, DEC.

noting the synaptic weight. We first consider the pairing protocol: whenever
one of the automata for the presynaptic and postsynaptic spiking triggers a
change from the state rising to the state falling, that is labelled by the syn-
chronization labels Inc and Dec, the weight automaton executes a transition
from the state noChange to the state Increase (Decrease).

3.1.4 Composition of the automata

For calculating the weight change with respect to the timing difference be-
tween the postsynaptic and presynaptic spikes, the defined automata have
to be executed in parallel. The parallel composition of the automata can
be constructed using a product operation as described in Definition 3. Let
Ay =(Loc,X, C, Flow, Inv, Init), Ay =(Loc, X, C, Flow, Inv, Init) denote
two hybrid systems, then the product Al x A2 of Al and A2 is the hybrid
system H. The hybrid system H for the STDP model consists of the cross
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product of the automata, such that:
H = preSpiking x postSpiking x ol Aut x r1Aut x weight

Identical labels are used for switches that should be executed in parallel. For
example, whenever the presynaptic automaton makes the transition from
the state rising to the state falling, the automaton for the weight change
has to execute a transition from the state noChange, which is the waiting
state, to its successor state decrease. In order to prevent the automaton
for the weight change from staying for an infinite time in one of the states
calculating the weight change, it has to switch back to its waiting state after
one time unit. In addition, the decay of the neuronal variables r1 and o1
influences the weight change. The decay is modelled by the automata r1Aut
and olAut. Since these quantities are used to compute the increase and the
decrease of the weight change, the variables 71 and ol are jointly used by
the automata weightAutomaton, r1Aut and ol Aut.

3.2 Abstracted LHA Model for STDP

The state explosion problem, which is inherent to all model checking pro-
cedures, results in a potential computational inefficiency of reachability
queries. This requires models that are as small and abstract as possible. For
improved analysis, we therefore build an abstracted linear hybrid automata
model of STDP without parallel composition. It works with fewer variables
and avoids the modelling of the regular spiking. Under the assumption, that
the neuronal spiking has a fixed frequency with no variation in amplitude,
one can omit the automata preSpiking and postSpiking which model the
regular spiking. Each spike leads to a change (decrease or increase) of the
synaptic weight. Therefore it is sufficient to integrate the timing into the
automaton in order to model the change of synaptic weight. If we assume a
spike frequency of 50 Hz there is going to be an increase in synaptic weight
at tpost = 10,30,50,70,... and an increase at t,.. = 20,40, 60,80,.... The
resting phase after the presynaptic and postsynaptic spike is modelled by
the locations WaitPrelnc and WaitPostInc. The automata r1Aut and ol Aut
are also integrated into the weight automaton by adding a self loop to each
of the states. Additionally, the clock x acts as a guard to guarantee the
occurrence of transitions at time ¢, and t,,s;. The clock t represents the
overall time elapse. Figure 5 shows the automaton for the optimized model.
It is worth mentioning that we aim to give examples for the modeling power
of hybrid systems. Providing evidence that the modular model from Sec-
tion 3.1 and the abstract model presented in this section are equivalent in
any formal sense goes beyond the scope of this paper.

Our abstracted model for STDP can also be used to represent the triplet
model of STDP. We used the following idea in order to account for the mul-
tiplicative operations on variables needed for the triplet model. Whenever
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Figure 5: Automaton for the compact model with synaptic weight w, vari-
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during a run of the LHA, the multiplication of r1-02- A3 and ol - r2 - A;‘
is required, we stop the state space exploration and write to disc the set of
reachable states computed up to that point. Additionally, we store the val-
ues of all variables in a parameter file. Then, we use an external program for
the multiplication and store the result in the parameter file. We read in the
parameter file and continue the computation of the set of reachable states.
Formally, this corresponds to a partitionning of the state space. Since we
store a snapshot of the state space and the values of the variables after each
step, we preserve all reachability properties by this partitioning procedure.

4 Analysis

The potential of using hybrid systems model checking, such as implemented
in the PHAVer tool, lies in being able to symbolically compute and explore
the state space of the STDP models that we developed. The state space
of an LHA model represents, amongst others, information regarding the
temporal dynamics of system parameters, i.e., information which parame-
ters can attain which value after a certain passage of time. Since PHAVer
uses a symbolic representation of the state space, it is then possible to a)
graphically represent the temporal valuation of system parameters, and b)
to answer queries whether certain parameter values or combinations of val-
ues correspond to a possible evolution of the system. We call the latter
queries reachability queries. We illustrate in this section how both types of
analyses can be used to obtain a better understanding of the model, as well
as to predict behavior that has not yet been observed experimentally. For
reasons of computational efficiency, we only use the abstracted LHA model
during our analysis. All reachability analysis described in this Section was
performed using PHAVer.

4.1 Reachability Analysis

PHAVer computes the set of reachable states by using a piecewise linear
approximation of the continuous components of the hybrid system under
investigation. The reachability analysis for the STDP model takes into ac-
count the change of synaptic weight over time and allows us to produce a
graphical representation of these changes using suitable plotting tools. We
use those graphical representations for the documentation of the system
behavior, and to confirm the experimental results of [20] as being consis-
tent with our model. In particular, we were able to verify the experimental
results of [20] using the following analysis steps.

The authors of [20] verify their model, on which ours is based, with
respect to the pairing experiments described in [25]. By setting A?{ and Ay
to zero, their model turns into a classical pair-based model. [20] report a
weight change of Aw &~ 0.09 in Figure 2C and Figure 2D of their paper.
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Figure 6: Visualization of the forbidden states as a projection to time (x-
axis) and synaptic weight(y-axis).

The results correspond to the weight change of Aw = 0.0858 computed
by our model, c.f. Figure 7. In particular, figure 7 (a) shows the set of
reachable states for our STDP model as a projection to time and synaptic
weight when applying the pairing protocol with a parameter set based on
the hippocampal experiments by [25].

By applying the triplet rule, [20] reproduce the results of the triplet
experiments by [25]. When considering spike triplets, our STDP model
yields a weight change of Aw = 0.1967 when the spike triplet consists of one
presynaptic and two postsynaptic spikes. This corresponds to the results of
Figure 4D in [20]. Figure 7 (b) shows the set of reachable states computed
for our STDP model as a projection to time and synaptic weight for the
triplet model.

4.2 Safety Verification

PHAVer has the capability to verify safety properties. A safety property
is a property stating that something bad does never happen [3], e.g., an
undesirable system configuration or value. Such a property can be verified
by defining a set of bad or forbidden states Rpqq. If the intersection of the
set of reachable states R with the set of bad states Rpqq is empty, this will
give the formal proof that these bad states are not reachable. For example,
let us assume that we wish to prove that the synaptic weight w after 496 ms
does not exceed a value of 1. In the PHAVer input language this can be
defined as a reachability query, characterizing bad states, as follows:

Shad = weight.{t > 496&w > 1}
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(b) Results of our triplet model with parameter set based on [25].

Figure 7: Set of reachable states as a projection to time (x-axis) and synaptic
weight (y-axis).
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As aresult, PHAVer returns the intersection of the set of bad states with the
set of reachable states, which is the empty set. When obtaining the empty
set as a result, we have a formal proof that the weight w does not exceed
the value of one after the first spike at t = 496 ms. PHAVer plots the set of
the defined forbidden states as shown in Figure 4.2.

As a second example, let us postulate that w after 1000 ms is still zero.
In the PHAVer input language, the converse of this condition, representing
a set of forbidden system configurations, can be expressed as

Shad = weight.{t < 1000&w > 0}.

It is easy to see that the weight is increased during the first 1000 ms and that
hence the forbidden system configuration is reachable. As a result, PHAVer
returns the intersection of the set of forbidden states with the set of reachable
states. If it is not the empty set, the states forming the intersection are given
and serve as an example of the violation of the property.

Reachable Forbidden States:

weight.{increase - - - t < 496&weight > 0& - - - };

Notice that the PHAVer output is shortened for better readability, irrelevant
information is abbreviated with - - -.

4.3 Prediction of system behavior

Our approach allows for the prediction of potential system behavior for some
assumed input or parameter values. In particular, the effects of parameter
changes can be computed by the model checker and read out of the graphical
representation of the reachability analysis. We consider the effect of varying
three quantities in our model for the pairing protocol.

4.3.1 Varying the values of the variables r1 and o1

We set the time span for the decay of the neuronal variables r1 and o1 to
50 ms for both variables, a value that we have chosen rather arbitrarily. One
can observe an increase of the synaptic weight. We obtain Aw = 0.0981 to
due to the larger time span that r! needs to reach zero.

4.3.2 Changing the frequency

Experiments by [25] and [22] indicate that a change in frequency has an ef-
fect on the the change of the synaptic weight. The pairing protocol version
of the model suggested by [20], however, fails to reproduce this frequency
dependency. According to [20], a variation of the frequency only leads to
a negligible change of the synaptic weight when pairs of spikes are consid-
ered. Our LHA based model of the pairing protocol yields results that are
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identical to the findings of [20]. Figure 8 (a) shows the effect of changing
the frequency to 40 Hz when considering a set of 60 spikes. We also observe
only a small change of the synaptic weight when increasing the frequency of
the neuronal spiking. When applying the parameter set of the visual cortex
data by [22] and increasing the frequency to 50 Hz, our model yields a weight
change Aw = 0.9, which is close to the experimental results of [22] for that
frequency. [20] report the related experimental data using their model in
[20], Table 1.

4.3.3 Modelling parameter ranges or time windows

Additionally, the model can be used to express uncertainties in the behavior
of the observed system. Let us assume that the point in time at which a
presynaptic spike occurs is not exactly known, but can happen some time
during an interval of 6 ms. The value of the synaptic weight is therefore
determined by a range, depending on the exact timing of the spike. The
graphical representation of the set of reachable states in figure 8 (b) takes
into account the value for the synaptic weight for all possible points in time
at which the spike may occur. The synaptic weight can take any value in
the colored area, depending on the timing of the spikes.

5 Conclusion

We have presented two LHA models for the STDP learning rule by [20].
The first model is composed of a number of independent components, each
of which is representing an important process contributing to the complex
dynamics of the STDP model. The main contribution of this model is that
it allows us to document knowledge about system behavior in a modular and
easily comprehensible and modifiable fashion. We then presented a compact
abstraction of this model, which we subjected to formal analysis using the
PHAVer model checker. This analysis allowed us to gain insight in the
temporal dynamics of the STDP model, and also to predict behavior when
changing the underlying model parameters. We then described a procedure
to deal with the multiplication of variable values, which allowed us to handle
the triplet spike model in addition to the pairing protocol. Using our models
we were able to reproduce the results of [20] by using parameters sets based
on the experiments of [25]. In future work we are interested in extending
our model to more complex models of STDP and to extend the modeling
and analysis to more complex networks of neurons.
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