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Abstract

We describe an algorithm for radial layout of undirected graphs, in
which nodes are constrained to concentric circles centered at the origin.
Such constraints are typical, e.g., in the layout of social networks, when
structural centrality is mapped to geometric centrality or when the pri-
mary intention of the layout is the display of the vicinity of a distinguished
node. Our approach is based on an extension of stress minimization with
a weighting scheme that gradually imposes radial constraints on the inter-
mediate layout during the majorization process, and thus is an attempt
to preserve as much information about the graph structure as possible.

1 Introduction

In radial graph layout the nodes are constrained to lie on a set of concentric
circles; for some or all nodes in the graph a radius is given, which typically
encodes non-structural information, or the results of a preceding analysis. His-
torical examples of such drawings date back to the 1940s [23], and the special
case in which all nodes are required to lie on the same circle is a often referred
to as circular layout.

We are interested in designing a method to determine layouts that meet the
following two, possibly contradicting, criteria:

• Representation of distances: The Euclidean distance between two nodes
in the drawing should correspond to their graph-theoretical distance.

• Radial constraints: Nodes are associated with the radius of a circle cen-
tered at the origin, and are constrained to be placed on the circumference
of this circle.

While the first criterion is a general readability objective in undirected graph
layout, the constraints in the second criterion are specific to the application at
hand.

An example is the exploration of hierarchies with discrete (nominal-scale)
layers [8]; in [25] large such hierarchies are laid out radially as a tree, followed
by an incremental force-based placement. This approach was later modified
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(a) unconstrained (b) with radial constraints

Figure 1: A social network (courtesy of Carola Lipp; 2075 nodes, 4769 edges),
consisting of two known clusters. The darkness of nodes is proportional to their
distances from the distinguished focal node, which also defines the radii used in
the constrained layout. Note that distances are represented more clearly, while
the two clusters are apparent, still.

for dynamic real-time exploration of a filesharing network in [26], where users
interactively select a node to be moved into the center, triggering an update of
the immediate surrounding of that node. A different approach is to adapt the
Sugiyama framework, originally designed for layout in parallel layers, to radial
layers [1].

In the case of fixed radii defined to represent some continuous (interval-scale)
node valuation, unary constraints are imposed on the drawing. This scenarion
is introduced in [5] to map any (structural) centrality index to visual centrality.
Layouts are determined from a combination of simulated annealing, which is
very flexible and allows for penalty costs, e.g., for edge crossings, and force-
directed placement. Because of its high computational cost, this method does
not scale even to moderately sized graphs, though. For applications in social
network analysis, it was therefore replaced by a combinatorial approach based
on circular layout [2].

Our present approach addresses the task more uniformly by formulating
both of the above criteria as objective functions measuring how far a layout is
from meeting them. While the first objective is captured by a common func-
tion known as weighted stress [16], we try to accomplish the second goal using
stress-like terms measuring the representation error with respect to the radial
constraints, and attempt to minimize a linear combination of the two objectives.

Quite recently, other extensions of the stress term have been used for drawing
graphs with explicitly formulated aesthetic criteria, such as the uniform scatter-
ing of the nodes in a graph over a unit disk [20], penalizing node overlaps [15],
or preserving a given topology [13].
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All these approaches modify the target distances themselves in one form or
another, while the approach presented here is based on engineering the weights
used in the stress minimization model. The weights are coefficients of error
terms involved in the quality criteria to be minimized. If chosen carefully, these
weights can be used to influence the configuration resulting from optimizing
the modified stress function; see Fig. 1 for an example. We are not aware of
previous work in graph drawing which systematically adjusts weights to adapt
an objective function to meet layout criteria.

2 Preliminaries

Let G = (V,E) be a simple undirected graph, i.e., E ⊆
(
V
2

)
. We will denote the

cardinalities of the node and edge sets by n = |V | and m = |E|, respectively;
it is sometimes convenient to index nodes by numbers, V = {v1, . . . , vn}. The
graph-theoretical distance between two nodes u, v is the number of edges on a
shortest path between u and v and is denoted du,v or, when there is no danger
of confusion, duv. The matrix D = (duv)uv ∈ Rn×n contains the distances
between every two nodes in G; the diameter of G is the maximum distance
between any two nodes in G, diam(G) = maxu,v∈V duv. All graphs are assumed
to be connected; otherwise, connected components are considered individually.

Two-dimensional node positions are denoted by p(v) = (xv, yv). The Eu-
clidean distance between two nodes in a layout p is defined as ‖p(u)− p(v)‖ =(
(xu − xv)2 + (yu − yv)2

)1/2.

3 Stress, Weights, and Constraints

3.1 Stress

The foundation of our method is multidimensional scaling (MDS) [3, 9]. Orig-
inating in psychometrics and the social sciences, MDS has been established
and widely used for graph drawing since its popularization by Kamada and
Kawai [19]. While there is a wide range of variants and extensions, we here
concentrate on the stress minimization approach [16].

Given a set of target distances among a set of n objects, the overall goal is to
place these objects in a low-dimensional Euclidean space in such a way that the
resulting distances fit the desired ones as well. In the graph drawing literature,
the desired distances are usually graph-theoretical (shortest-path) distances duv,
and the goal is to find two-dimensional positions p(v) for all nodes v ∈ V with

‖p(u)− p(v)‖ ≈ duv

attained as closely as possible for all pairs u, v. When the configuration is
not required to satisfy any further constraints, the objective function, called
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(weighted) stress, is the sum of squared residuals

σ(p) =
∑
u,v

wuv

(
duv − ‖p(u)− p(v)‖

)2 (1)

over all the n(n − 1)/2 pairs of nodes, where wuv ≥ 0 is a weight for the
contribution of the particular error term (duv −‖p(u)− p(v)‖)2 associated with
the pair u, v.

There is wide consensus that configurations with a small stress value tend
to be structurally informative, and aesthetically pleasing. The state-of-the-art
approach to finding such layouts is stress majorization [10, 16]; starting from
an initial configuration, it generates an improving sequence of layouts. When
no coordinates are at hand, the iterative process may be initialized at random,
but more favorable and robust strategies are available. The experiments of [7]
indicate that approximate classical scaling [6] is the method of choice.

During stress majorization, new positions p̂(u) = (x̂u, ŷu) for every node
u ∈ V can be computed from the current positions using the update rules

x̂u ←
∑

v 6=u wuv (xv + duv · (xu − xv) · buv)∑
v 6=u wuv

(2)

ŷu ←
∑

v 6=u wuv (yv + duv · (yu − yv) · buv)∑
v 6=u wuv

(3)

where

buv =

{
1

‖p(u)−p(v)‖ if ‖p(u)− p(v)‖ > 0,

0 otherwise.

This update is repeated until the relative change in the entire configuration is
below a predefined threshold value, a predefined number of steps, or some other
criterion. The sequence of layouts generated in this way can be shown to have
non-increasing stress and to converge towards a local minimum [11].

3.2 Weights for Constraints

In early applications of MDS, each pair u, v of objects was assigned the same
unit weight corresponding to wuv = 1 in (1). When a target distance is unknown
for some pair, it is simply ignored by using a zero weight for its contribution to
the stress.

The standard weighted scheme for graph drawing uses wuv = d−2
uv . It was

introduced as elastic scaling by McGee [21], and is equal to the one used by
Kamada and Kawai [19]. Its superiority is due to an emphasis of small distances
over large ones. This is because the fit of local distances is visually important,
but also because it means that instead of fitting absolute values by minimizing
absolute residual error terms

(duv − ‖p(u)− p(v)‖)2 ,
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the objective is reformulated in relative error terms

(1− ‖p(u)− p(v)‖/duv)2 .

Summing these over all pairs gives

∑
u,v

(
1− ‖p(u)− p(v)‖

duv

)2

=
∑
u,v

1
d2

uv

(
duv − ‖p(u)− p(v)‖

)2
.

A reason for the favorable aesthetic properties of low-stress layouts is that no
node is preferred over others because minimization of the objective function is an
attempt to achieve a balance in the fit of the desired distances. In most scenarios
this is appropriate and tends to give the drawing a pleasing appearance.

In some cases, it may be desirable to put more emphasis on some nodes, while
other nodes are regarded less important, for instance by centering the view on
a node and visualizing this node’s neighborhood more prominently. This can
be done by introducing suitable constraints on the configuration. When these
constraints can be formulated in terms of target distances, choosing the weights
in a suitable way allows to impose them on the resulting layout without changing
the layout algorithm.

What follows is a general framework for constrained graph drawing in sce-
narios in which constraints can be expressed in terms of target distances. While
the range of possible applications is much wider, our contribution will concen-
trate on the radial layout scenario. To avoid confusion, objective function (1)
will be referred to as distance stress, denoted by σW (p). The subscript indicates
that the stress defined using weight matrix W = (wuv)uv ∈ Rn×n. This stress
model is extended by a second set of weights Z = (zuv)uv used for the constraint
stress defined by

σZ(p) =
∑
u,v

zuv (duv − ‖p(u)− p(v)‖)2 . (4)

Its minimization is an attempt to fit the same distances and hence aims at
representing the same information, but highlights different aspects.

3.3 Interpolated Weights

A straightforward approach to satisfy constraints associated with an additional
weight matrix Z is to minimize (4) directly, say, after minimization of distance
stress σW . This tends, however, to result in trivial solutions. Consider for
instance radial constraints forcing each node v ∈ V to be at distance rv from
the center. Clearly, we may end up in a layout with xv = rv, yv = 0 from any
initial configuration.

Instead, distance and constraint stress should be reduced simultaneously. An
effective approach is to combine them into a joint majorization process, operat-
ing on a linear combination of the stress measures σW (p) and σZ(p) changing
gradually in favor of the constraints.
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Initially, nodes are allowed to move freely without considering constraints at
all, by minimizing just σW (p). Then, constraints are granted more and more
control over the layout by dynamically changing coefficients in this combination,
shifting the bias from one criterion to the other [4]. The relative influence of
distance and radial components is determined by the coefficients in the linear
combination

σ(1−t)·W+t·Z = (1− t) · σW (p) + t · σZ(p) . (5)

This is easily incorporated into the stress majorization process by changing
update rules (2) and (3) to

x̂u ←
∑

v 6=u

(
(1− t) · wuv + t · zuv

)
·
(
xv + duv · (xu − xv) · buv

)∑
v 6=u

(
(1− t) · wuv + t · zuv

) ,

ŷu ←
∑

v 6=u

(
(1− t) · wuv + t · zuv

)
·
(
yv + duv · (yu − yv) · buv

)∑
v 6=u

(
(1− t) · wuv + t · zuv

) .

In the majorization process, radial constraints are enforced neither directly nor
immediately, so that the main visual features of the initial configuration can be
preserved. The bias is shifted from the distance component towards the radial
component by gradually increasing t from 0 to 1. When the number of iteration
steps k is fixed, linear interpolation yields values t = 0, 1

k ,
2
k , . . . ,

k−1
k , 1. Oth-

erwise, the iterative process may simply be repeated with a sequence of values
for k converging to 1 from below until the layout is sufficiently stable. Using
either variant, in each step, a slightly different objective function is sought to be
minimized, and the current iterate preconditions the next step, thus smoothing
the sequence of iterates.

The multidimensional scaling literature sometimes distinguishes different
forms of constraints [17]. With soft (weak) constraints, solutions are allowed
to deviate from the given constraints, and this deviation is penalized by addi-
tional stress. With hard (strong) constraints, only solutions which satisfy the
constraints exactly are feasible.

In this terminology, an unconstrained MDS problem can be thought of as a
special case of a weakly constrained problem, in which the deviation penalty is
zero. In our case, arriving at t = 1 in (5) turns the weakly constrained problem
into a strongly constrained one, provided that the set of constraints can be
satisfied, i.e., a solution with zero constraint stress exists. In all other cases,
it should be noted that, even though the distance component vanishes when
t→ 1, minimizing σ(1−t)·W+t·Z(p) is not the same as minimizing σZ(p) because
of the running preconditioning described above.

4 Radial Layout

To illustrate the utilization of radial constraints for interest-based graph layout,
we discuss three different scenarios in this section.
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4.1 Focusing on a Node

In a neighborhood diagram, the focus is put on a node by distorting its surround-
ings. Here we constrain all others to be located at a Euclidean distances from the
distinguished node that corresponds to their graph-theoretical distances from
it, i.e., the distance-k neighborhood is mapped to the k circle centered on that
node (which can be regarded as the geometric k-neighborhood).

To implement this design, the constraint weight matrix takes those pairs of
nodes into account that the focal node, say vi, is involved in, with all other
weights reduced to zero. Matrices D and W are defined as above, and the
constraint weight matrix Z = (zuv)uv has non-zero entries only in the i-th row
and column

Z =



0 · · · 0 wv1vi
0 · · · 0

...
. . . 0

... 0
. . .

...
0 · · · 0 wvi−1vi

0 · · · 0
wviv1 · · · wvivi−1 0 wvivi+1 · · · wvivn

0 · · · 0 wvi+1vi 0 · · · 0
...

. . . 0
... 0

. . .
...

0 · · · 0 wvnvi 0 · · · 0


.

These are derived from the distances to the focal node, so that interpolating from
W to Z gradually increases the focal node’s relative impact on the configuration.

For dynamic visualization scenarios, an inherently smooth transition be-
tween layouts with different foci can be obtained by simply using the interme-
diate layouts given by the steps in the majorization process. In the transition
from one focus to the other, it is advantageous not to interpolate directly be-
tween the two corresponding constraint weight matrices, but to take a detour
via the original weight matrix having entries d−2

uv , so as to re-introduce all the
shortest-path distances to remove artifacts potentially introduced after focusing
on the first node.

As an example, we consider a famous social network studied by Zachary
and, subsequently, many others [27]. It describes friendship relations among
34 members in the karate club of a U.S. university in the 1970s. Over the
course of a two-year study, the network breaks apart into two clubs because
of disagreements between the administrator and the instructor, with the latter
leaving the club and taking about half of the members with him. Following [22],
this data set has been used frequently as a benchmark for the performance of
various clustering approaches.

Fig. 2 shows how the same initial layout, which is computed by minimizing
stress without constraints, is gradually modified into radial layouts, one focusing
on the instructor and the other on the administrator.

The insight gained from Fig 2 is two-fold. Technically, it is visible that large
parts of the overall shape of the layout are preserved well during the gradual
relative increase of constraint stress. Substantively, we can see immediately that
the decision to leave the club is in one-to-one correspondence with the presence
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(a) focusing on the instructor

(b) focusing on the administrator

Figure 2: Radial layouts of Zachary’s karate club network (n = 34,m = 77),
by weight interpolation, for t ∈ {0, 0.9, 1}. Members leaving with the instructor
are shown as yellow squares, members staying with the administrator as red
circles.

in the neighborhood of the instructor or administrator. The only exceptions are
the two members in each group that have direct ties with both of them. The two
rightmost drawings clearly tell the whole story and also show that practically
any reasonable clustering approach should be able to recover the division into
those leaving and staying from the structure of friendships. Hence, this network
is actually a very poor benchmark for the assessment of clustering approaches.

4.2 Centrality Drawings

A special property of the constraints in the previous section is that their target
distances correspond directly to a column in distance matrix D. In centrality
drawings, the requirement is that radii are given as part of the input, and
therefore in general do not correspond to the distance from an existing focal
node. It is, however, easy to augment the distance matrix accordingly.

Assume that nodes are numbered v1, . . . , vn and that the radii are given
as additional input in a vector r = [r1, . . . , rn]T ∈ Rn, with ri ≥ 0 for all
i = 1, . . . , n. Since radial constraints can be specified in terms of distances from
the origin, we express then as

‖p(vi)‖ = ri .

This way the origin can be incorporated as a dummy node vn+1 with artificial
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target distances dvi,vn+1 = dvn+1,vi = ri, and the stress majorization procedure
is applied to a layout problem of n+ 1 objects. Such a dummy is used, e.g., in
[4] to enforce a circular configuration by using the same radius for all objects.
Distance and weight matrices are set up for (5) as

D =


dv1v1 · · · dv1vn r1

...
. . .

...
...

dvnv1 · · · dvnvn rn
r1 · · · rn 0

 ,

W =


d−2

v1v1
· · · d−2

v1vn
0

...
. . .

...
...

d−2
vnv1

· · · d−2
vnvn

0
0 · · · 0 0

 ,

Z =


0 · · · 0 r−2

1
...

. . .
...

...
0 · · · 0 r−2

n

r−2
1 · · · r−2

n 0

 .

Let c = (cv)v∈V be a centrality measure on the nodes of a graph G = (V,E).
Radii for nodes vi ∈ V = {v1, . . . , vn} can be specified as

ri =
diam(G)

2
·

1−
cvi
−min

u∈V
cu

max
u∈V

cu −min
u∈V

cu + c(G)

 ,

where the factor of diam(G)/2 serves to bring them to the same scale as the
distances based on shortest paths used in the distance stress. The parameter
c(G) is a small offset that larger than zero if there are several nodes of maxi-
mum centrality [5]. As an alternative, non-linear scaling of centralities can be
to emphasize the structure in different centrality intervals. For instance, the
central (peripheral) areas are enlarged by applying a concave (convex) function
magnifying regions of smaller (larger) centrality scores.

Examples of centrality drawings for Zachary’s karate club network are shown
in Figure 3. The left column is based on closeness centrality [24]

cv =
1∑

t∈V

dvt

,

which is simply the inverse average distance from a vertex to all others. The
right column contains drawings based on betweenness centrality [14]

cv =
∑

s6=v 6=t∈V

δ(s, t|v) ,
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Figure 3: Centrality layouts of the karate club social network, using two com-
mon centrality measures to define the radii of nodes. Center and periphery are
emphasized using transformed radii r′i = 1 − (1 − ri)3 and r′i = r3i (0 ≤ ri ≤ 1
and 0 ≤ r′i ≤ 1, respectively.
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Algorithm 1: Layout with general radial constraints
Input: connected undirected graph G = (V,E),

radii rv ∈ R>0 for all v ∈ V , number of iterations k ∈ N
Output: coordinates p(v) with ‖p(v)‖ = rv for all v ∈ V
D ← matrix of shortest path distances duv

W ← matrix of inverse squared distances d−2
uv

p← layout with low distance stress σW (p)
for t = 0, 1

k ,
2
k , . . . ,

k−1
k , 1 do

for v ∈ V do

xv ←

X
u∈V \{v}

(1− t) · wuv
`
xu + duv · (xv − xu) · buv

´
+ t · r−2

v (rvxvav)

(1− t)
X

u∈V \{v}
wuv + t · r−2

v

yv ←

X
u∈V \{v}

(1− t) · wuv
`
yu + duv · (yv − yu) · buv

´
+ t · r−2

v (rvyvav)

(1− t)
X

u∈V \{v}
wuv + t · r−2

v

where δ(s, t|v) is the dependency of s, t ∈ V on v ∈ V , which is defined as
the fraction of shortest (s, t)-paths that contain v as an inner vertex. Not
surprisingly, both the instructor and the administrator are central according to
any measures. It is interesting to note, however, that this is due to the fact
that they integrate largely separate neighborhoods. The layouts reveal that
closeness values have a higher resolution in the center, whereas betweenness has
more variance in the periphery. These diagrams should not be seen as part of a
serious exploration, though, but as mere illustrations of possible use cases.

Simplified pseudo-code for general radial constraints is given in Algorithm 1,
where quantities av are defined as

av =

{
1

‖p(v)‖ if ‖p(v)‖ > 0,

0 otherwise .

4.3 Travel Time Maps

Schematic maps have become an essential guide for travelers in public trans-
portation systems. Such maps commonly depict lines, stations, zones, and con-
nections to other traffic systems. Since the primary use of such maps is for
travel planning, usability and readability are more important criteria than the
accurate representation of actual geographic positions. In the graph drawing
literature, this drawing style is called metro map layout (see, e.g., [18] for a
force-directed approach).

The seminal design is Harry Beck’s map of London Underground, commonly
known as the Tube. It has been and still is being reworked and improved, and
it has inspired similar maps for systems of public transportation all over the
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world. While schematic maps are widely perceived as very useful, a potential
drawback is that they tend to distort a user’s perception of distance, thus poten-
tially compromising decisions made in the travel planning process, e.g., because
stations are displayed as more proximate than they actually are.

If the starting and ending stations of a planned journey are known, radial
constraints can be used to highlight the time needed for traveling between them
by focusing only on the starting station as described above. Alternatively, short-
est paths between the two stations can be highlighted by putting the focus on
both of them at the same time.

Again, D,W ∈ Rn×n are defined as the matrices of shortest-path distances
and their inverse squares, respectively. The constraint weight matrix is set to

Z =


0 · · · 0 wv1,vn−1 wv1,vn

...
. . . 0

...
...

0 · · · 0 wvn−2vn−1 wvn−2vn

wvn−1,v1 · · · wvn−1,vn−2 0 wvn−1vn

wvn,v1 · · · wvn,vn−2 wvnvn−1 0

 , (6)

where vn−1 and vn are assumed to be the focal nodes. When interpolating from
the original weight matrix W to the constraint weight matrix Z, distances to
(and between) the two focused nodes become increasingly influential.

As an example we use a connection graph of the Tube with approximate
station locations and travel times.1 Radial layouts are given in Fig. 4, where
stations are placed at a distance from the center proportional to their estimated
minimum travel times from two sample stations. Since travel times are only
approximately related to shortest-path distance, these examples are more closely
related to centrality drawings than to neighborhood diagrams.

Their combination is shown in Fig 5. Even though this map is only an
experimental illustration of a scenario with two foci, it does convey a sense of
alternate direct routes and detours.

5 Discussion

We argued that radial constraints fit well into the framework of multidimensional
scaling by stress majorization with a penalty function.

An obvious advantage is the simplicity of our approach, because radii can be
expressed in terms of target distances and thus require only minor modifications
of available implementations for stress minimization.

Since the method can be initialized with any layout and constraints are
introduced only gradually, we are likely to end up in a feasible solution close
to the initial one. While sensitivity to initialization is usually a disadvantage
of iterative layout methods, it is very welcome in the present scenario, because
it instills hope that some properties of a high-quality unconstrained layout can

1Made available by Tom Carden at http://www.tom-carden.co.uk/p5/tube_map_travel_

times/applet/.
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(a) travel time from Golders Green

(b) travel time from Greenwich

Figure 4: Radial layouts of the London Tube graph using estimated travel
times. The concentric circles indicate travel times in multiples of 10 minutes.
The stations are constrained to be at distance equal to their minimum travel
times.
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(a) geographically accurate

(b) dual-focus radial layout with circles in 10min intervals

Figure 5: Tube graph with fastest routes between Golders Green and Greenwich
highlighted using thicker edges.
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be preserved in the solution obtained. Together with the greater degree of
freedom during most of the process, it is possible that stress majorization with
penalty functions is not only simpler, but also more effective than gradient-
projection methods [12] which maintain a feasible solution throughout. An
in-depth comparison is therefore an important direction for future research.

Other possible extensions of this work include its use in approximate con-
straint satisfaction (by stopping the iterations before constraints become dom-
inant) or animation. Moreover, the approach generalizes to other constraints
expressible as targets distances and an thus be used to enforce, e.g., desired
groupings or variation in the contribution of substructures to the overall layout.
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