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Evaluation of hierarchical interestingness measures
for mining pairwise generalized association rules
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Abstract—In the literature about association analysis, many
interestingness measures have been proposed to assess the quality
of obtained association rules in order to select a small set of
the most interesting among them. In the particular case of
hierarchically organized items and generalized association rules
connecting them, a measure that dealt appropriately with the
hierarchy would be advantageous. Here we present the further
developments of a new class of such hierarchical interestingness
measures and compare them with a large set of conventional
measures and with three hierarchical pruning methods from the
literature. The aim is to find interesting pairwise generalized
association rules connecting the concepts of multiple ontologies.
Interested in the broad empirical evaluation of interestingness
measures, we compared the rules obtained by 39 methods on
three real world datasets against predefined ground truth sets of
associations. To this end, we adopted a framework of instance-
based ontology matching and extended the set of performance
measures by two novel measures: relation learning recall and
precision which take into account hierarchical relationships
between rules.

Index Terms—Data Mining, Association Rules, Interestingness
Measures, Ontology Matching

I. INTRODUCTION

This paper discusses a task of mining pairwise associations
between the concepts of multiple ontologies. An ontology
[1] formally specifies the concepts (usually hierarchically
organized) and their relations within a domain. The concepts
of ontologies are often used to classify or annotate objects. An
ontology O is a structure O = (T'm, C, Rel, G), where Terms
T'm usually cover natural language aspects and are assigned
to concepts C and relations Rel. Examples for concepts
are “biological process” or “animal cell” and for relations
“to transport sugar” or “positively regulates”. The relations
connect concepts producing a labelled graph structure G' over
these concepts. More specifically, we focus on the underlying
taxonomies which contain concepts connected only by the is-a
relation. They are also often referred to as concept hierarchies
[1]], we will utilize both terms interchangeably.

The motivation behind this task is that associations con-
necting different ontologies can be very helpful in many
applications varying from ontology mapping to multi-label
classification [2]]. In the latter case, the data to be classified
often share a common representation in the input space, but
possess multiple class taxonomies in the output space. For
example, a movie can be classified simultaneously either by
its genre in a genre taxonomy or by the producing company in
a taxonomy of producers. A possible association between the
taxonomies could involve a specific company being specialized
in a certain genre of movies, e.g. science fiction. Discovering

such implicit relations between class taxonomies may support
experts in extracting new knowledge from data, on the one
hand, and facilitate understanding of obtained classification
results, on the other.

Association rule mining [3]] is one of the methods which
can be used to solve the considered task. It was initially
applied to the market basket analysis in order to find related
products, e.g. present in the same transaction. A transaction is
a subset of items, for example, items purchased together. An
Association Rule (AR) has the form X — Y, where X and
Y are disjoint sets of items (X is called the antecedent and YV
the consequent). To select a small set of the most interesting
ARs, the so-called Interestingness Measures (IMs) are used.
Support and confidence are most commonly used IMs in AR
mining. If the items are hierarchically organized, Generalized
Association Rules (GARs) [4] can be found across different
levels of a hierarchy. For example, a rule “Shirt”—*“Shoes”
would be more specific than the rule “Clothes”—*“Shoes”. In
our study, items correspond to the concepts of ontologies and
transactions — to the objects annotated by them.

However, mining associations between ontological concepts
does not completely match the standard setting of the as-
sociation analysis that assumes frequent itemset mining, i.e.
only associations between the most frequent itemsets can
be established. This is due to the fact that in the market
basket analysis it is reasonable to pay attention only to the
products that are frequently bought together. In contrast, while
connecting ontological concepts, we are more interested in
finding rare associations that affect only a small subset of
data rather than frequent ones which correspond to high-
level concepts and well-known facts. Furthermore, appropriate
handling rare cases [5] is especially useful when the standard
association analysis would eliminate infrequent but neverthe-
less interesting relations, e.g. in biology where new knowledge
could be gathered from seldom combinations of gene functions
emerging together in only a few proteins [[6]. Therefore,
mining rare ARs has recently attracted more attention 7], [8].

As the standard AR mining cannot be directly applied to our
task, we propose an alternative approach. It uses a new class of
hierarchical IMs for assessing the quality of rules with respect
to (w.r.t.) the hierarchy [2], [9]. Since the redundancy of GARs
is caused to a large extent by the hierarchical structure itself,
it can be used by such IMs for penalizing redundant rules.
The idea is to take into account a given standard measure
and its respective hierarchical expectation. In this paper, we
further develop the class of hierarchical measures and compare
them with a large number of conventional IMs proposed in the
literature as well as with three hierarchical pruning methods.
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This wide experimental comparison is the most important
contribution of our study. To the best of our knowledge, no
comparative analysis of IMs has been performed for GARs
yet. In this study, we will close this gap by comparing the
developed hierarchical IMs with a large set of 29 conventional
IMs. Among this set, the most interesting for comparison may
be those which were shown to be well suited for mining rare
ARs by [8]: Cosine, AllConfidence and Jaccard. As the leaf
nodes of a concept hierarchy can usually be seen as rare
items, the hypothesis that these three measures are also best
suited for finding non-redundant associations between multiple
ontologies should be verified experimentally.

It is often difficult to compare IMs because usually only
few experimental results are available in the literature. An
additional difficulty is that it is typically not known in advance
which associations should be discovered. One possibility is to
compare the rules obtained by different measures with those
manually extracted by a human expert. However, this approach
is restricted by the great effort that is involved. As a result,
manually extracted rules are rarely available. Alternatively,
the best measure can be found by comparing how well
each measure agrees with the expectation of an expert when
analyzing a small subset of ARs [[10]. Motivated by our task
of connecting multiple ontologies, we decided to adopt the
evaluation framework of instance-based ontology matching for
the experimental comparison of IMs. It assumes that multiple
ontologies should be aligned by connecting similar concepts
using classified data and the quality of this alignment is then
assessed by the comparison with a manually created set of
correct connections (ground truth associations, true rule set).
Thus, the number of discovered true associations can serve as
an indicator of quality for IMs. Obviously, it is restricted to
the case of balanced associations (with similar distributions of
the antecedent and the consequent in an association) because
we assume that the ontologies are similar. In general, it will
not necessarily hold. For the case of unbalanced associations
please refer to [11]].

Another contribution of this work is the development of
two new performance measures: Relation Learning Recall
and Relation Learning Precision by improving the method of
[12]. The reason is that the standard performance measures
precision and recall are insufficient to deal with hierarchically
structured rules because they cannot take into account partial
matches between discovered and the true rules, e.g. if a more
general concept was found instead of a special one.

The rest of the paper is organized as follows: Section
gives a brief overview of related work. Section [[II] introduces
our approach along with the new class of hierarchical IMs
and shows the list of IMs used for comparison. Section
describes the datasets, experimental settings and results. In
Section the discussion of the results is presented and
Section [V]] concludes the paper.

II. RELATED WORK

An overview of related work stemming from different fields
is summarized in Table [ Considering a general research on
IMs, there are many studies of their properties [10], [11]], [13],

Table I: List of related works organized by field

[ Field [ Studies |
Research on IMs [10], (1], [13] and [14]
Semantic Data Mining [15], [16] and [17]
FCA [18] and [19]
Non-taxonomic relations [12] and [20]

Ontology Matching AROMA [1], HICAL [21], GLUE
[22], oPLMap [23]] and [24]
AROMA [1]], GRP [4], GCC [25]

[2]I, [9]] and [26]

Hierarchical pruning methods
Hierarchical Measures

[14]. However, they do not treat the special case of GARs and
hierarchical measures.

In the field of semantic data mining, we find our approach
related to the use of ontologies as background knowledge.
For example, ontologies are used in [15] for discovering
semantically richer ARs and in [[16] for learning more general
rules. However, the taxonomies in these cases are merely tools
for improving the quality of obtained rules and not the subject
of mapping. It should also be noted that a recent work [[17]]
presents an AR-based approach to the generation of ontologies
from Resource Description Framework (RDF) repositories. It
can also be seen as a related research area.

In [18] and [19]], Martin et al. discuss the problem of finding
fuzzy associations between different taxonomies by means
of fuzzy Formal Concept Analysis (FCA). This task comes
close to ours, but our approach differs from it by using crisp
taxonomies as well as by exploiting GARs to connect them.
Additionally, fuzzy FCA does not describe the hierarchical
relations of the trees themselves nor the relation between two
hierarchies.

A more relevant field involves discovering non-taxonomic
relations in ontology learning by AR mining [[12], [20]]. In [12],
GARs are also used in order to mine co-occurrences among
pairs of words in text and thus to connect different parts of
an ontology. Although the algorithm has been claimed to be
built on the original one of [4]], it is in fact quite different. The
rules are pruned in such a way that more general ancestral rules
replace more specific ones. In contrast, we suggest discovering
the most interesting rules by analyzing deviations of child rules
from their parent rules as proposed by [4]. This is also the
reason why we discard the approach of multi-level ARs [26],
[27]], where the separate search for confidence and support
thresholds at each hierarchy level is required. We rather aim
at finding the most interesting rules along the path from a
leaf (most specific) concept to the root (most general) of the
hierarchy.

As discussed above, instance-based ontology matching is
a research field closely related to our task. The key idea is
that the more sets of instances corresponding to two concepts
overlap, the more related they are. Developed methods (e.g.
HICAL [21]], GLUE [22] and a more recent oPLMap [23]))
use the instances directly associated with a concept for finding
correspondences between the concepts, however, without using
ARs. On the contrary, in [24]] a case study of ontology match-
ing by means of pairwise ARs was reported recently. In this
study, Paulheim et al. also used the DBpedia-Yago dataset in
a similar setting, but applied the standard support-confidence
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framework and did not extract GARs. Another application of
association analysis to ontology matching is AROMA, short
for Association Rule Ontology Matching Approach [1]], which
also utilizes pairwise ARs for mapping between ontologies.
However, it does not use any hierarchical IMs but rather a
rule selection criterion with the implication intensity measure
[H We will consider this method later on as AROMA pruning,
because we would like to discuss it together with other pruning
methods. It consists of checking the IM value of any more
generative rule than a given rule r. Rules defined as more
generative are those that have either a more general antecedent
or a more specific consequent or both. If a more generative rule
with a greater IM value than that of r does not exist, r is said
to be significant and is selected. The main difference between
ontology matching methods and our work is that they map or
combine similar taxonomies, while we are generally interested
in analyzing connections between different taxonomies.

Additionally, we can consider two hierarchical pruning
methods more as related approaches because they use hier-
archy for removing redundant rules. The first is hierarchical
pruning of [4]], which we later refer to as Generalized Rule
Pruning (GRP). Srikant et al. proposed pruning more special-
ized rules deeper in the hierarchy unless they differ signifi-
cantly from their ancestor rules as measured by calculating
expected values, or expectations, for support and confidence
(SupEzp, CnfExp, see Table [). This enables significant
reduction of the found rule set as compared with standard AR
mining in the presence of a hierarchy. The second hierarchical
pruning method was proposed in [25]] as the Generalized rule
Confidence Constraint (GCC). It compares each rule r with
all rules where the consequent has any descendant of the
consequent of r and the same antecedent. If none of those
rules has a confidence greater than the minimum confidence
threshold, then r should be retained, otherwise it should
be discarded. We use the hierarchical pruning methods for
comparison in the experimental part of this work.

Hierarchical IMs were introduced in [2], [9] and [26]. In
the last case, only minor changes of calculating support and
confidence were proposed, for example, taking into account
only a subset of transactions containing at least one of the
concepts of the antecedent and the consequent and not the
total number of transactions. We will discuss the hierarchical
IMs in the next section.

ITI. APPROACH
A. Problem Definition

A taxonomy is a set of concepts C' connected by a tree
or a Directed Acyclic Graph (DAG) T' = (C,G), and every
concept a € C'is connected to a parent @ € C' through an edge
in the graph G, i.e. a <,. @ where <, is the is_a partial order
relation (subsumption relation) [1]. Further, the ancestors of a
concept a are concepts lying on the path between this concept
and the root: {anc; | a <. anc;; a,anc; € C}. If an object
is assigned to a certain concept it should also possess all its

I Although one should distinguish between selection and pruning rules (by
selection we understand sorting with retaining rules not meeting the pruning
criteria).

cell eukaryotic biological process (BP)

single-organism BP
cell proli-
feration (CP)

- tissue remodeling

bone blood CP in bone

Figure 1: Example hierarchies (adapted excerpt from CL-GO)
and relation mismatches

ancestors. As depicted in the example of Figure[T] the concepts
are organized hierarchically and if some proteins (objects)
belong to the ’cell bone marrow’ concept and are connected to
"cell proliferation in bone marrow’, this also implies that these
proteins are in ’animal cell’ and involved in ’single organism
BP’ (i.e. belong to all those concepts). The task is then to
derive associations between a concept pair where the concepts
are from different taxonomies 77 and 75, i.e. to find out how
a€Cy,beCy Cr €Ty, Co €Ty and Ty # Ty are related
by the set of given objects annotated by both concept sets.
We define also the parent rules of a—b as a—b and a—b.
One-to-one GARs are then the associations a—b allowed to
have items from different levels of the taxonomies, such as
aNb=0 and b is not an ancestor of a.

In our setting, GARs that describe the most interesting one-
to-one relationships between the concepts of two ontologies
are discovered by an Apriori-like [3]] algorithm based on the
analysis of concept co-occurrences. Two possible scenarios
can be distinguished: The first one considers the concepts as la-
bels of classified data. In the AR terminology, each transaction
can be seen as an object labeled by concepts, as in the above
example. Another example would be to search for connections
between entities classified by concepts as in Wikipedia pages.
Thus, the concepts of different ontologies can be connected if
they are assigned together to the same Wikipedia page (object).
The first three datasets for the experiments are created in this
way. The second scenario consists of analyzing unclassified
data, for example, a text corpus. The co-occurrence of terms
corresponding to the concepts of different ontologies in the
same sentence enables associations to be built between them.
The approach can be useful because co-occurring concepts
may indicate an important relation, e.g. if in a news group
a certain company/product/model is often discussed with a
certain malfunction. In this case, a transaction is represented
by a single sentence of the text. Mining GARs rather than ARs
in this scenario is even more advantageous because allows one
to overcome the data sparseness problem typical for short texts
[28] by extending the set of searched term combinations.

The main stages of the algorithm in the case of classified
data are as follows: First, the objects with the concepts of a
dataset are taken as input. Then, ARs are created by connecting
a concept from C to a concept from C5. The obtained rules
are ranked according to an IM and a fixed number of the top
rules are taken from the rule set. Different IMs can be applied
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at this stage. And finally, the quality of the reduced rule set
is evaluated by performance measures. In the second scenario,
sentences are scanned for concepts. After the transactions are
filled with the concepts, it can be proceed as in the first
scenario.

B. Interestingness Measures for Association Rules

Given a set of transactions of the size n, n, (np) and
nqp correspond to the number of transactions containing the
item a (b) and both items, respectively. Further, ngz is the
number of transactions without the item a. The corresponding
frequencies of the items are defined as Support, denoted by p
(i.e. pap = “t). The formulas for different IMs applied to a
rule a—b can be found in Table [lIl The most popular of them
is Confidence that is an estimate of the conditional probability
P(bla) of b given a. In the standard setting, itemsets are first
pruned by a minimum Support threshold to find frequent
itemsets and then the rules connecting them are pruned by a
minimum Confidence threshold to select the most interesting
ones. As we intend to find all possible rules from C; to Cs
and not only the most frequent ones, we investigate all rules
where Support is greater than zero (pg,>0). The motivation
is that the leaf concepts in a hierarchy may be relatively
infrequent in comparison to the concepts of higher levels, but
the associations between leaf concepts may be more significant
because the concepts of high levels tend to produce trivial
rules. It was mentioned in the literature [29], that the minimum
Support constraint prevents discovering most interesting rules
if Support is not directly related to the interestingness of a
rule as in the case of a hierarchy.

It should be noted that the Support of a rule grows by
climbing up in the hierarchy and the following relations hold
[36]:

-~

(a) Sup(a,b) > Sup(a,d); (c) Sup(a,a) > Sup(a,b);
(b) Sup(a,b) > Sup(a,b); (d) Cnf(a,b) > Cnf(a,b).

where @ is the parent of @ in hierarchy H;, and b is the
parent of b in Ho.

An additional disadvantage of the well established support-
confidence framework is that “Confidence is unable to extract
truly interesting rules”, as stated in [37]]. For example, a rule
with a high Confidence value can still be of low relevance, as
the Support of the consequent is not taken into account: If it
is higher than the Confidence of the rule, then the items are
even negatively correlated [37]], [38]]. Another aspect is that
the Confidence needs the minimum Support to filter spurious
rules, e.g. rules with a low antecedent Support and a much
higher consequent Support. Such rules have also a “specific
to general” character when connecting ontologies. Often rules
with a high Support and a high Confidence tend to be trivial.
Therefore, numerous alternative IMs have been proposed in the
literature [13]]. We will compare some of them in the presented
setting.

Despite the variety of existing IMs, only a few of them
possess a valuable property of null-transaction invariance,
which was recently shown to be critically important for mining
large datasets [[11]]. This property means that a measure is not

Table II: List of used interestingness measures and abbrevia-
tions. Every measure has two parameters a, b.

l Measure name [ Abbrev. [ Formula [ Ref. ‘
Null-invariant
Confidence Cnf Bab 131
Pab ]
Sebag-Schoenauer | Seb Pa—po [13L
Jaccard Jac Mﬁ [IOL
Cosine Cos \/% [SL
AllConfidence ACnf min(Cnf (a,b),Cnf (b,a)) 181
o 1 1
Kulczynski Kule pr * (E + E) (i1
Not Null-invariant
Support Sup Pab B3] |
Lift Lif Cp—’:f (1o
Conviction Cnv % [30]

. Cnf—p . B
Certainty Crf leipbb’ if Cnf>py 1)
factor % ,  otherwise
Loevinger Loe Bab—Pa*Pp [13]

Pa—Pa*Pp a
Piatetsky-Shapiro | PS n*(Pab—Pa*Db) [32L
Bayes Factor BF %ﬁ*“) 13
Centered ) N
Confidence CCnf Onf—py [13)
Klosgen Kilos VPab*(Cnf —pp) (33] |
Odds Ratio oD Db ol (18]
ab*Pab -
Kappa K 25 % [34L
J-measure JM Pab*log(5oeb)+p o5+ ]
Pab
too (2457 |
Least Pab—Pgaj
LC Pab—Pap 13
Contradiction Pb _ [ L
Gini index GINI | pax(Cnf+(52)) +pg 101
<<%>2+)<ﬁg%b>i>(—p§)—pg i
Pab*(Pgp) — P p)*Pab
Yule's Q YQ Py (P TPt (Pay) (1ol |
, Yy VPab*(Pag) =/ (Pa5)*(Pap) 10
Yule's Y \/Pab*Pap) /P ap)* (Pab) [ L
Collective PabtPa3 Pa*pp+pa*py
Strength cs Pa*Pp+Pa*py PabtPqp [34]
Laplace L % [34L
Zhang Zhang | sopeb et S 347
¢-coefficient ) — Pab—Pa*Pp 0]
\/Pa*pp*(pa)*(pg) N
¢-Confidence dCnf ¢ Cnf [35]
¢-Jaccard dJac ¢*Jac our
¢-AllConfidence PACHf | ¢pxACnf our
¢-Kappa oK ki our
Expectations and Dif-Measures
Support . pa
Ezxpectation SupEzp | pap * Pa [4L
Confidence Pab
Ezxpectation CnfEzp Pa 4l
Jaccard Pab* %
Ezxpectation JacEep W our
Support Sup
Interestingness Int Sup Exp+Sup our
Confidence Cnf _
Interestingness Cnfnt CnfBap+Cnf — ™ our
g?gf:iiﬁ;e C TLfDZf Cnf*(Cnf — CnfEzxp) our
éa;‘}%f;‘?;ice JacDif Jacx(Jac— JacExp) our
AllConfidence-Dif | ACnfDif | ACnf(ACnf—ACnfEzp) our
¢-JacDif ¢JacDif | ¢xJacDif our
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affected by the number of null-transactions, i.e. transactions
that contain none of the items of interest. Typically, the number
of occurrences of an item is small when compared to the
total number of transactions. If a measure is affected by the
number of null-transactions it will produce unstable results
depending on the current size of the dataset. For this reason,
we include six null-invariant measures in the set of measures
to be analyzed in this paper: Confidence, Cosine, Jaccard,
AllConfidence, Kulczynski, and Sebag-Schoenauer. Addition-
ally, some popular but not null-invariant measures such as, for
example, Lift and Conviction are also considered. ¢-coefficient
and Kappa are in principle not null-invariant measures but
both converge to a certain value if the number of transactions
increases (for more details see online supplemental material
139D.

C. Hierarchical Interestingness Measures

Unfortunately, none of the conventional IMs is well-suited
for mining GARs. In such a case, rules in higher hierarchy
levels subsume rules in deeper levels. Thus, the hierarchy
can be used successfully for pruning redundant rules as. For
example, in the hierarchical pruning method GRP only the
rules whose Support (or Confidence) is more than c times the
expected value are said to be interesting, where ¢ > 1 is a user-
defined threshold. These expectations are calculated based on
the hierarchy (see Table [II).

Both GRP and GCC are based on the standard support-
confidence framework and therefore share its shortcomings.
Furthermore, GRP additionally depends upon the right choice
of the parameter c. Although AROMA pruning step exploits
an alternative IM, it does not use expectations, which is also
true for GCC.

To overcome these limitations we developed a general class
of hierarchical IMs which are calculated using a conventional
IM and its expectation. First, we proposed a new IM by
replacing Support and Confidence constraints of GRP through
a direct calculation of the measure value on the basis of
expectations [2]. Since the objective behind this measure was
to improve GRP, it also uses the ratio of real and expected
values. However, in contrast to GRP, it can be applied not only
to Support and Confidence, but also to any other IM with a
range of [0, 1], and for which an expectation can be defined
and interpreted meaningfully. Comparing the real value MV
of a metric M for a rule a—b with its expectation value ME,
the Interestingness is:

MV (a,b) 1

MV {(a,b)+ME(a,b) 1 MEGS

if MV (a,b)>0

Mint(a,b) = {

Examples of expectations for Support, Confidence, and Jac-
card are shown in Table [l They correspond to an extension
of the formulas for support and confidence expectations from
(4], substituting Sup(a,b) for SupFExp(a,b) in the calculation
of the IMs. For the root nodes they are set to p, * py, Pp, and
#%, respectively. This is based on the independence
assumption for the distributions of items a and b. Although
this first hierarchical IM was shown to successfully detect

0, if MV (a,b)=0.

Table III: Example transactions

Nr. Rule Support Item Support
1 |cell eukaryotic — bone remodeling 2 cell eukaryotic| 150
2 bone — bone remodeling 2 bone 100
3 marrow — bone remodeling 1 marrow 90
4 osteoclast — bone remodeling 1 osteoclast 10

interesting rules, it has a significant limitation of low noise
resistance [39].

To eliminate this drawback, we developed another measure
Interestingness by Difference [9]] which is based on the differ-
ence between the real and the expected values as follows:

MDif (a,b) = MV (a,b)(MV (a,b) — ME(a,b)).

MDif depends directly on the magnitude of the real value
and is therefore less sensitive to very small expectations. If
the expected values become greater than the real ones, MDif
converts to negative. This happens, for example, when a sibling
or even the parent of a node has a stronger relation to the
consequent of the rule. Similarly to the Interestingness, this
measure can also be used in different variants (based on
Support, Confidence, the Jaccard coefficient or on any other
conventional measure with the range of [0, 1]).

To illustrate the behavior of this measure, a simple example
is depicted in Table CnfDif for three rules Rule 2-4 can
be calculated as follows:

Rule 2: 0.02 % (0.02 — 125) ~ 0.0001, Rule 3: 55 * (55 —
125) &~ —0.0001, Rule 4: 0.1 % (0.1 — ;%) ~ 0.008.

In this case, Rule 4 has the highest value among three rules
but it is much smaller than the possible maximum because the
real Confidence value was low. Since the sibling of Rule 3 has
a stronger relation to the consequent, it has a negative value.

We chose JacDif, CnfDif, and ACnfDif for the exper-
imental comparison. The advantage of the latter one is that
it uses not only the Confidence of a rule a—b, but also the
Confidence of its reverse (b—a). Calculating expectations,
the rules can be generalized on the antecedent (consequent)
side or on both sides. For simplicity, we assume in this
study that the generalization side is always the left-hand side
(antecedent) that corresponds to the set C;. In the case of
ACnfDif, however, both hierarchies should be taken into
account, depending on the particular Confidence values of a
rule in each direction. Indeed, the expectation ACnfEzp will
be either 2t if Cnf(a,b)<Cnf(b,a) or ’;%E otherwise.

In order to further develop the Interestingn%ss by Difference,
we now propose ¢-JacDif which is the product of ¢ and
JacDif . Tt utilizes the Pearson coefficient ¢ similarly to the
approach of [35] where it was used to evaluate the degree
of dependence between the antecedent and the consequent
of a rule. Taking the zero value at independence, it is able
to separate positively and negatively correlated items and
facilitate rule pruning. Only those rules which connect highly
positively correlated items will obtain high scores; negatively
correlated items, in turn, will obtain a negative ¢ value not
allowing them to be ordered high in the ranked rule list. It
was shown by [35] that the high discriminating power of ¢
can be combined with another IM improving its performance.
Casas-Garriga multiplied ¢ by Confidence for a two-fold
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purpose: First, to assign high scores to rules that have a
positive correlation between items and, second, to distinguish
the strength of implication of the rule against its reverse. This
measure is denoted by ¢-Confidence in Table

In some cases, e.g. finding corresponding concepts in two
different ontologies, it is imperative that the direction is in-
distinguishable because an AR reflects a symmetrical relation-
ship. Thus, multiplying ¢ by a symmetrical IM would be more
appropriate in our setting. For comparison with ¢-JacDif, we
combined ¢ with some other symmetrical measures: Jaccard,
AllConfidence, and . We normalized measures which can
become negative to the [0,1] interval before multiplying with

o.

D. Performance measures

For the evaluation of experimental results, two types of
performance measures were used. The standard recall and
precision measures as well as measures derived from the
relation learning accuracy [40]. Recall (R) is known as the
ratio of the number of discovered true elements to the total
number of true elements. Precision (P) is the ratio of the
number of discovered true elements to the number of all
elements found. F-1 is the harmonic mean of R and P.
Recall and precision are inappropriate to assess the quality
of rules embedded into a hierarchy. Both measures do not
differentiate between specific and general relations as implied
by a hierarchy and cannot recognize neighborhoods. Thus,
other performance measures can become more useful for the
discrimination of the obtained results in our task.

To examine how a found rule set is related to the true rule set
given by the hand-coded relations, we improved the method
of Generic Relation Learning Accuracy (RLA) proposed in
[12]. The idea of RLA is to measure an average distance
between discovered and true relations. While RLA considers
the quality of a found rule set only in terms of accuracy, we
were also interested in most compact rule sets, and therefore
developed Relation Learning Recall (RLR), Precision (RLP),
and F'-1 measure (RLF-1). As stated above, the definitions
of precision and recall are based on an exact match between
relations. In contrast, the use of RLA enables the matching
degrees between each pair of relations to be assessed, leading
to more sensitive performance measures. To obtain RLR and
RLP, we renamed the original RLA into RLA and changed
its meaning by focusing on the true rule set rather than on the
discovered one. Consequently, the sum over found rules was
replaced by the sum over the true rules — RLA. The following
formulas describe the calculation of RLR and RLP in detail.

0,if root is not an ancestor of lcs(ay, az)

d(les(ay,az),ro0t)+1
d(les(ar,az),root)+1+68(a1,a2

CLA(al, ag) = {

)7otherwise
(D
MA((ay,by), (az,b2)) = \/CLA(a1,a2) * CLA(by,by) (2)

RLA(v,U) = max,ey MA(u,v) 3)
RLA(U,V) = ﬁ > RLA(v,U) (4)
veV

m(u, V) = max,ecy MA(u,v) 3)
RLA,(U,V) =Y RLA(u,V) (6)

1 uelU 1
RLR(U,V) = — RLA,; RLP(U,V)= —RLA, (7)

U V]
where U is the true rule set and V' the discovered rule set.
For each true rule v € U the so-called Matching Accuracy
MA(u,v) = MA((a1,b1), (az, b)) is calculated (Eq. [2) w.r.t.
each discovered rule v € V' on the basis of Concept Learning
Accuracy CLA (Eq. [I).

First, for each side of a rule, CLA(u,v) measures the dis-
tance between two nodes in the hierarchy (0(u,v)) in relation
to the distance between their least common superconcept (lcs)
and the root node root. The distance is measured by the
number of edges traversed on the shortest path between two
nodes. In the case of a DAG, multiple inheritance leads to
more than one [cs, but only one with the best CLA value is
chosen. We slightly changed the formula of [12] by adding
the unity to the root node distances in order to ensure the
applicability of CLA to the rules containing the root concepts
(the situation did not appear in [[12]). In this way, mistakes
made at higher levels of the hierarchy or which have large
distances are penalized more severely. In contrary to [12f], we
allow multiple root concepts for an ontology and do not bridge
the top concepts that are too far away ontologically, creating
new roots. For example, the top concepts “abstraction” and
“physical entity” from the Yago taxonomy are not connected,
therefore the CLA between them is zero.

Then, MA is computed as the geometric mean of CLA
of antecedents CLA(aq,a2) and consequents CLA(by,bs) of
both relations. For each r, the MA value of the best mat(@n\g
rule among all discovered relations is then taken as RLA
(Eq. [). This allows a single found relation to cover multiple
true relations, although not perfectly. The last step (Eq.
concerns the averaging over the true rules for RLR, and over
the found rules for RLP. The main advantage of this approach
as compared to that of [12] is that RLR and RLP play
complementary roles similarly to R and P and combining
them by RLF'-1 leads to better performance assessment.

A simple example is depicted in Figure The true
rule (for this example) osteoclast—bone remodeling,
named rosp. (Os stands for osteoclast and Br for
bone remodeling), is compared to the found rule
bone—bone remodelling, named rp,p, (Bo stands
for bone). The calculation of MA(rossr,”BoBr)
is then as follows: MA((Os, Br),(Bo, Br)) =

4(Bo,Ce)+1 % §(Br,Bp)+1 —./3 ~ 087
5(Bo,Ce)+1+6(0s,Bo) © §(Br,Bp)+1+6(Br,Br)~ \/ 4 ~ Y0

Ce stands for cell

eukaryotic and Bp for biological
process. For comparison the distance to the rule
marrow—scell  proliferation in bone marrow: Tpracm
(Ma stands for marrow and Cm for cell proliferation

in bone marrow) is: MA((Os,Br),(Ma,Cm))=
\/ 5(Bo,Ce)+1 X 5(So,Bp)+1 _ o
6(Bo,Ce)+1+6(0s,Ma) = 6(So,Bp)+1+5(Br,Cm)~ \/ 5 ~

0.45, So stands for single-organism. The rule
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MA((Os, Br), (Bo,Br)) gets a much higher M A value
because it is nearer to the true rule.

The CLA calculation’s dependence on the distance between
root and lcs causes that both RLA and RLF-1 are sensitive
to the hierarchy depth. For example, if the cell eukaryotic
node had a parent (i.e. all nodes would have a distance to
the root node increased by 1), the last result would change

to MA((Os,Br),(Ma,Cm)) = \/g ~ 0.47. This can
complicate to some extent result comparison for datasets with
different depths. On the other side, the advantage of this
approach is that deeper rules are seen to be closer to each other
than higher rules even with the same relative difference. It is
similar to the approaches proposed in the field of hierarchical
multi-label classification [41]].

The range of the RLA and RLR is from 0 for a total
miss for every rule and 1 for a perfect match of the two rule
sets. It should be noted that RLP can theoretically become
greater than 1 when |U| > |V, i.e. it is no longer normalized.
Nevertheless, in practice, the number of found rules is often
greater than the number of true ones. Ideally, all found rules
would correspond to the true rules and it would produce RLP
equal to 1, but usually it is much smaller.

IV. EXPERIMENTS
A. Settings

In order to provide a fair comparison of IMs and do not
need to choose a proper threshold value for each measure,
we applied two simple techniques to selecting small rule sets.
The first one is the well-known selection of only “top & rules”
where k in our case is chosen to be equal to the number of the
true rules in each dataset, so that precision and recall become
equal. This setting attracted recently more attention as a useful
alternative to the threshold setting [42]. In the second setting
“best possible” introduced in [9]], the best possible size of
a found rule set w.r.t. the obtained F'-1 value is iteratively
searched for. To this end, all rules are first sorted by their
measure values in descending order and F'-1 is calculated,
then the last rule (with the lowest measure value) is removed
from the set. The next iteration starts with recalculating the
F-1 value. Finally, the rule set with the highest F-1 value
is selected, thus the rule set size can be different for each
method.

The pruning methods from the literature, with which we
compared our results, have different parameters. For GCC
[25], we used the minimum Confidence of 0.3 as it achieved
the best results in the original paper. For GRP, the threshold
c was set to 1.1 as in [4]. In the AROMA study, the authors
used a threshold to choose the rule set size. Here, the rule set
size is given by the specific setting of the experiment.

Further, we grouped together results of IMs with the same
rule ordering: Cnf and Seb as well as Cnv, Loe and Crf. The
equivalence of the first four was already shown in [13]]. Crf
is the same as Loe if Cnf>py and this is true for the highest
ranked rules. The ordering is also the same for Y@ and Y'Y,
since for a rule (a;—b;) to have a value greater than another

(aj—b;, i#j) both measures should obey the same condition
( Pab; *Pab; Pab, *Pab;

Pab; *paﬁ_j ;Dagj *Pab; )

For the experiments, four datasets were prepared — called
Movies, Universities, DBpedia-Yago and CL-GO — with two
similar ontologies in each case and with increasing complexity.
We evaluated the sets of ARs obtained by every IM against
a ground truth set, which had been built manually. Our
experimental comparison on the first three datasets showed
that several IMs were able to extract small sets of rules with a
high fraction of correct associations for all datasets. In the next
step, we applied them to CL-GO, a larger and more complex
dataset from the bioinformatics domain.

B. Data

The Movies dataset previously used in [[19] comprises
movies from the Internet Movie Database (IMDb) and the
Rotten Tomatoes (RT) databases. From the roughly 90,000
movies in each database, we selected only those which had
at least one genre assigned (like thriller or comedy) and
which had an almost exact match for title and director in both
databases. Additionally, only the genres with more than 250
entries in IMDb and more than 30 entries in RT were chosen.
As there were no predefined genre hierarchies in this dataset,
they were extracted automatically by the Apriori algorithm
as described in [43]. To generate a ground truth set of
associations, 48 connections between the IMDb and RT genre
hierarchies were created manually: e.g. “IM: Comedy—RT:
Comedy”, “IM: Sci-Fi—RT: Science Fiction and fantasy”. Due
to the small number of the true connections, they were rather
rare associations.

The Universities dataset was published in the Ontology
Alignment Evaluation Initiative (OAEI 2009) and used in
earlier studies [1]], [22]]. In this case we trained a neuro-fuzzy
classifier [43]] with descriptions of the courses of a university
(i.e. Cornell) so that the courses of the other university (i.e.
Washington) could be classified into the same taxonomy (i.e.
the Cornell Courses Taxonomy). The 10-fold cross-validation
classification on the Cornell data yielded a micro-F'-1 score of
76.24+1.8% and on the Washington data of 80.1+0.6%. Then
we applied the classifier trained with the Cornell University
data to the prediction of the categories for the courses of
Washington University. Co-occurrences were used for estab-
lishing associations between the ontologies similarly to [22].
For further details see [39].

A large dataset DBpedia-Yago from [24] is based on
Wikipedia articles with structured information, as the main
goal of DBpedia is to make them available in a unified format.
Yago is a semantic knowledge base created on top of Wordnet,
Wikipedia and Geonames. The used dataset was downloaded
from the Internet page of DBpedia [44]. It had 264 (the
root node “Thing” was removed) and 96,472 concepts for
DBpedia and Yago, respectively. As the ground truth set a
partial gold standard mapping between the DBpedia and the
Yago ontologies [45] containing 170 connections was taken,
but only 162 associations actually appeared in the data. More
details are given in [39].

The fourth dataset was introduced by [46] for connecting
Cell Ontology (CL) with Gene Ontology (GO) by the text
analysis of PubMed articles. In this case, there were no pre-
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classified data, and the text corpus was searched for the co-
occurrences of terms directly corresponding to the concepts
of CL and GO in the same sentence. We used the dataset
as it was processed in [9]. The so-called cross-products were
used as a partial ground truth rule set. The cross-products
were generated automatically by an information extraction
method based on term decomposition [47] and were then
verified manually. Due to pattern matching of substrings in
concept names, only concepts possessing similar names can be
connected by the method. This is a serious drawback because
most of such connections are trivial like “CL: T cell-GO:
T cell receptor complex™ and therefore not interesting. Since
our method is explicitly designed to avoid discovering obvious
rules w.r.t. the hierarchy, the comparison with cross-products
cannot serve as the only criterion of its quality. As we could
not find any CL-GO: Molecular Function cross-products, only
those between CL and GO: Biological Process as well as
GO: Cell Component were taken from the Open Biological
and Biomedical Ontologies (OBO) foundry [48]. In total 196
relationships (from the original 677) actually co-occurred in
the dataset.

To cope with DAGs, multiple expectations for DBpedia-
Yago and CL-GO (from all possible parents) were calculated
and the smallest one was used.

C. Results of the Movies Dataset

In the first experiment, the impact of using different IMs on
discovering the hand-coded associations of the Movies dataset
was studied. It was first investigated how the measures rank the
true rules among an increasing amount of found rules (Figure
@. The whole rule set consisted of 4,895 rules. At the Y-axis,
the graph shows the number of found true rules among the
top X rules obtained by the measures Jac and Cnf as well as
by their respective Dif counterparts and Int. Obviously, the
steeper the increase of a curve, the better the IM. One can see
that Cnf was the worst among the presented measures. Jac,
Cos, and ACnf were among the best measures in this task,
the latter two had curves very similar to Jac (not shown in the
figure). Note that all three measures are considered to be well-
suited for rare ARs. Indeed, the manually created associations
of this dataset were rather rare. In only eight of them, the
Support was greater than 5%. This was the reason why they
were difficult to find. So, all hand-coded relations could be
found by Jac only after reaching about 3,000 rules in total.
The growth of other curves was even slower.

Especially interesting is the comparison of curves between
Cnf and CnfDif likewise between Jac and JacDif . Both Dif
measures first significantly outperformed their conventional
counterparts, but lost their advantage towards the end. It can be
explained by the hierarchically redundant nature of a large part
of the true rules. Both curves had a steep increase approaching
the end because redundant true rules were discovered by both
measures very late, i.e. the rules which are expected from
the hierarchy. It is because such rules typically have a small
difference between their actual values and the expectations
and therefore are ranked very low by the Dif measures.
Int behaved similarly: It had a good start but it could not

50

40|

30

207

Number of true rules found

101

10 10 10° 10° 10*
Number of rules extracted
Figure 2: Number of true rules found in the top X rules

extracted by Cnf and Jac, their respective Difs and Int.

find general rules and therefore it performed worse than Cnf
towards the end.

The results of the experiment setting “top 48 rules” are
depicted in Table The results of the performance mea-
sures are multiplied by 100 for readability. Here, Cnf again
showed low performance and could find only 7 true rules.
The hierarchical pruning method GCC, upon which it is based,
performed similarly to Cnf, but the entire rule set it found was
different. CnfDif was again able to improve the performance
of Cnf. Another measure that outperformed Cnf was ACnf:
Although it is basically a confidence measure, it is better suited
to connect two hierarchies because if there is a high Cnf value
of both rule directions, the corresponding concepts can likely
be important to each other.

The measures well-suited for rare ARs Jac, Cos, and ACnf
were good in this setting and found at least 16 true rules.
Much better though were the measures «, CS, ¢, and those
based on the latter as well as JacDif and ACnfDif which all
found between 24 and 26 true rules. Multiplying by ¢ usually
removes a large amount of unwanted rules for bad measures,
as can be seen on the result of ¢ Cnf: The number of the true
rules found by Cnf was tripled by combining it with ¢. The
best result in terms of F'-1 had ¢ and ¢« followed by , CS,
PACnf, ACnfDif, and ¢ JacDif (all with the same result).

The more detailed comparison of the true rules extracted by
JacDif with those extracted by Jac (Table helps explain
the differences in their rule sets. Nine rules not found by Jac
but found by JacDif were all relatively unexpected w.r.t. the
hierarchy. They had a relatively low Jac value but at the same
time their JacEzrp values were much lower so that it led to
relatively high JacDif values. Jac, in turn, ranked higher rules
like e.g. “IM: Drama—RT: Comedy” even with higher JacExp
than Jac (0.29 vs. 0.23), that is with a negative JacDif value.
There was only one true rule which Jac found but JacDif did
not. This was due to its high expectation of about 0.22.

The influence of multiplying by ¢ can be best explained by
the comparison of the true rule sets of ¢JacDif and JacDif.
It shows that they differed by five rules. ¢ JacDif found three
rules which had high ¢ values and relatively low JacDif
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Table IV: Movies results, three best results are marked in bold; fnd=number of extracted rules, tf=number of true rules found.

Measure “top 48 rules” “best possible”

tf F-1 RLF-1 | RLA fnd | tf R P F-1 RLR | RLP | RLF-1 | RLA

1. Cnf/Seb 7 14.58 40.04 57.49 65 9 18.75 | 13.85 | 15.93 | 55.53 | 41.00 47.17 58.15

2. Jac 16 | 33.33 68.27 61.65 61 21 | 43.75 | 34.43 | 3853 | 73.88 | 58.13 65.07 61.95

3. Cos 17 | 35.42 67.30 67.07 36 16 | 3333 | 44.44 | 38.10 | 6434 | 85.79 73.53 69.99

4. ACnf 16 | 33.33 67.57 58.54 56 | 20 | 41.67 | 35.71 | 38.46 | 72.09 | 61.79 66.54 59.62
5. Kulc 15 | 31.25 60.29 70.93 15 11 | 2292 | 7333 | 3492 | 45.73 | 146.34 69.69 90.81

6. Lift 18 | 37.50 58.44 61.64 39 17 | 3542 | 4359 | 39.08 | 53.83 | 66.26 59.40 69.97

7. Cnv/Crf /Loe 10 | 20.83 52.20 54.79 108 | 22 | 45.83 | 20.37 | 28.21 | 77.68 | 34.53 47.81 54.73
8. PS 11 | 22.92 47.71 57.00 || 124 | 27 | 56.25 | 21.77 | 31.40 | 80.21 31.05 44.77 60.12

9. BF 21 | 4375 62.60 67.59 47 | 21 | 4375 | 44.68 | 4421 | 62.60 | 63.93 63.26 69.03
10. CCnf 16 | 33.33 62.98 62.85 59 | 21 | 4375 | 3559 | 39.25 | 69.30 | 56.38 62.17 64.04
11 Klos 14 | 29.17 58.70 66.29 17 12 25 70.59 | 36.92 | 42.88 | 121.07 63.33 81.62
12. oD 19 | 39.58 60.74 71.95 62 | 26 | 54.17 | 41.94 | 4727 | 7526 | 5827 65.68 72.22
13. K 25 | 52.08 75.22 78.51 40 | 24 50 60 54.55 | 69.95 83.94 76.31 81.96
14. JM 22 | 45.83 65.25 69.17 62 | 27 | 56.25 | 43.55 | 49.09 | 77.11 59.70 67.30 70.79
15. LC 9 18.75 57.58 60.35 13 8 16.67 | 61.54 | 26.23 | 38.19 | 141.01 60.10 80.70
16. GINI 15 | 31.25 57.19 56.32 41 15 | 31.25 | 36.59 | 33.71 | 54.51 63.81 58.79 56.15
17 YQ/YY 18 | 37.50 58.66 69.37 64 | 26 | 54.17 | 40.62 | 46.43 | 7526 | 56.44 64.51 70.86
18 cs 25 | 52.08 75.36 79.38 58 | 28 | 58.33 | 4828 | 52.83 | 78.62 | 65.07 71.21 76.96
19. L 7 14.58 40.04 56.29 65 9 | 1875 | 13.85 | 1593 | 5553 | 41.00 47.17 58.15
20. Zhang 21 | 4375 62.60 67.59 47 | 21 | 4375 | 44.68 | 4421 | 62.60 | 63.93 63.26 69.03
21. ¢ 26 | 54.17 75.11 81.49 54 |29 | 6042 | 53.70 | 56.86 | 79.75 | 70.89 75.06 81.36
22. ¢ Cnf 21 | 43.75 66.76 74.09 38 | 20 | 41.67 | 52.63 | 46.51 | 60.46 | 76.38 67.49 78.31
23. ¢Jac 23 | 47.92 73.73 77.89 58 | 27 | 56.25 | 46.55 | 5094 | 77.99 | 64.54 70.63 78.45
24. PpACnf 25 | 52.08 75.82 79.38 48 | 25 | 52.08 | 52.08 | 52.08 | 75.82 | 75.82 75.82 79.38
25. oK 26 | 54.17 75.11 81.49 51 28 | 5833 | 54.90 | 56.57 | 79.14 | 74.49 76.75 81.42
26. Int 14 | 29.17 55.76 47.52 36 13 | 27.08 | 36.11 | 30.95 | 5246 | 69.95 59.95 55.04
217. JacDif 24 50 73.64 71.49 43 | 24 50 55.81 | 52.75 | 73.64 | 82.20 77.68 77.38
28. CnfDif 13 | 27.08 61.57 53.14 97 | 22 | 45.83 | 22.68 | 30.34 | 78.68 | 38.93 52.09 50.23
29. ACnfDif 25 | 52.08 72.87 72.93 45 | 25 | 52.08 | 55.56 | 53.76 | 72.87 | 71.73 75.23 76.22
30. ¢JacDif 25 | 52.08 73.70 80.25 54 | 29 | 60.42 | 53.70 | 56.86 | 79.75 | 70.89 75.06 81.36
31. GCC 7 14.58 40.04 59.62 38 7 14.58 | 1842 | 16.28 | 37.94 | 47.93 42.35 60.33
32. AROMA 17 | 3542 68.77 62.60 56 | 21 | 43.75 | 37.50 | 40.38 | 72.31 61.98 66.75 64.81
33. GRP 8 16.67 57.89 50.12 165 | 26 | 54.17 | 15.76 | 24.41 | 82.79 | 24.08 37.31 40.83

Table V: Comparison of rules undetected by Jac and JacDif
respectively among the top 48 rules, JD = Jac — JacExp.

#[Rule [level ng, Jac JacEzp ID  JacDif
True rules undetected by Jac but found by JacDif
1/IM: gangster—RT: Organized| 1 14 0.127 0.017 0.110 0.014
Crime
2|IM: Fantasy—RT: Science-| 0 48 0.171 0.022 0.149 0.026
Fiction and fantasy
3|IM: War—RT: War 1 24 0.133 0.015 0.117 0.016
4|IM: detective—RT: Detectives | 2 27 0.125 0.040 0.085 0.011
5|IM: robbery—RT: Thieves 1 13 0.126 0.024 0.102 0.013
6|IM: lesbian—RT: Gay/Lesbian| 2 17 0.112 0.031 0.081 0.009
7|IM: family-relationships— RT:| 1 57 0.176 0.039 0.137 0.024
Family interaction
8|IM: Sci-Fi—RT: Futuristic 0 34 0.158 0.011 0.147 0.023
9|IM: kidnapping—RT: Kidnap-| 1 27 0.165 0.015 0.149 0.025
ping & missing persons
True rule undetected by JacDif but found by Jac
1|IM: Animation— RT: Anima-| 2 28 0.241 0.216 0.025 0.006
tion

values (ranked between 70 and 79) because they were either
expected from the hierarchy or in the case of the root rule
“IM: Horror—RT: Slasher” its JacFzp, calculated under the
independence assumption, was relatively high. On the other
hand, two rules not found by ¢JacDif were ranked as 49th
and 51st, that is they were likely to be found within a slightly
larger set.

Among the hierarchical pruning methods, AROMA
achieved the best results comparable with those of Jac and
Cos. The other two methods performed worse than the hier-
archical IMs.

As expected, the majority of the results of Dif measures
were superior to that of Interestingness. Its problem was
that the rules with an extremely low Support belonging to
a parent with a much higher Support were mostly selected as
interesting. For a detailed example see [39].

It should be noted that the hierarchy-based performance
measures RLF-1 and RLA can often disagree with F-1
because they both count even poor matches between the true
and found rules. A noticeable difference between the same
F-1 and different RLF-1 values of the measures ¢JacDif
and ¢ ACnf can be explained by the fact that the true rules
with the antecedent concept item IM: Crime were represented
by ¢JacDif with a specific sibling rule whereas ¢ ACnf had
a more general corresponding concept assigned, producing a
higher match accuracy value. Moreover, despite one additional
true rule, ¢ and ¢k had lower RLF-1 values than ¢ACnf
because their discovered rule sets were generally not as
representative as that of pACnf and did not match the true
rule set as well. In turn, the disagreement of both hierarchy-
based measures is caused by the difference in their assessment
of the compliance between the rule sets.

CnfDif outperformed Cnf but its results were worse than
those of the other Dif measures because of the weakness of
the Confidence in this task. Besides that, Dif measures showed
good results in terms of F'-1. Their additional advantage lies
in the compression of the found rule set, as can be seen in
the next experiment setting “best possible” (Table [[V). This
setting is useful because redundant rules can be removed
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iteratively, and the performance can be increased either by
a higher precision or by a higher recall.

The optimal size of the found rule set in this case equals the
number of the true rules. A larger set increases the probability
of a better recall, but the precision decreases simultaneously.
Therefore, the highest F-1 values are to be expected from
measures with the rule set size around 48. Still this relaxation
of a fixed rule set size is generally beneficial for the IMs.

In the “best possible” experiment, the F'-1 scores were
similar to those of the previous experiment for the majority
of measures. The exceptions were Cnv/Crf/Loe, PS, Klos,
OD, and LC with an absolute improvement of 7-8%. While
Cnv/Crf/Loe, PS, and OD could indeed increase the num-
ber of found true rules, Klos and LC even decreased the
number of found true rules and their improvement was only
due to the small sizes of their rule sets. Among the pruning
methods, only GRP could achieve a significant improvement
of about 8%. This is probably because of its use of the
expectations. However, it is still inferior to the Dif measures
which had much more compact rule sets.

o, ¢JacDif and ¢r were again the best measures. This
time the first two showed even the highest F'-1 value. x and
ACnfDif had in this setting fourth and fifth F-1 values and
very compact rule sets of 40 and 45 rules, respectively. It is
important to note that JacDif and ACnfDif extracted less
rules than their respective counterparts but had nevertheless
more true rules among them. In contrast, CnfDif increased
the found rule set as compared with Cnf. Though all of
them could improve the F-1 and RLF-1 values of their
counterparts, JacDif achieved the overall best RLF-1 value.

The difference between RLF-1 and RLA can be demon-
strated in this setting. An important drawback of RLA is its
high correlation with precision. It can be seen in the example
of Kulc which had the highest precision and the highest
RLA value due to its small rule set with a large part of true
rules. This was also reflected in its best RLP. However, both
harmonic mean measures F’-1 and RLF'-1 as opposite to RLA
balanced their values by taking the low recall into account.
The high correlation coefficient between P and RLA of 0.9
calculated for all IMs confirmed their strong dependence. In
contrast, it was only 0.81 for the pair P and RLF-1.

Further, we evaluated how well a random set of found rules
could cover the true rule set. It was simulated by randomly
sorting all rules ten times and taking the first 48 rules. The
average values of RLF-1 and RLA were then 25.645.2 and
23.941.3, respectively. All measures in this experiment, even
the worst ones, achieved higher values in both cases, indicating
that they are much better than a random choice.

D. Results of the Universities Dataset

For the Universities dataset, the results of the setting “top
55 rules” are depicted in Table In this experiment, Cnf
showed the worst F-1 performance and Jac the best. ACnf,
K, CS, JacDif, and ACnfDif had the second best F-1 value.
They all found 32 true rules, but they did not have the same
rule set, as is reflected by their different RLF-1 values. (Even
though the values of x and CS were identical, their rule sets
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differentiated by two rules.) Most of the ¢ based measures
produced the third best F-1 value with 31 true rules. Only
¢ Cnf with 20 true rules was inferior to the others, but its
result is nevertheless 20 times better than that of Cnf with
only one true rule.

Analyzing the results, one can see again that the F'-1 values
of several measures diverged from their RLF-1 and RLA
values. For example, Lift discovered nine true rules, which
had lower RLF-1 and RLA values than YQ/YY - which
found only one true rule. This was due to the fact that the
rule set of YQ/YY was more representative. This can be
measured by the calculation of the mean coverage values for
all found rules excluding the true ones. The comparison of
these values shows that they were much lower for 46 rules of
Lift (average RLA;=0.37 and RLA=0.51) than for 54 rules
of YQ/YY (average RLA,=0.49 and RLA=0.6).

In this experiment, GCC could also improve the result of
Cnf, but it was still much worse than those of the Dif
measures. AROMA and GRP behaved similarly to the previous
experiment, whereas AROMA was much better than GCC and
GRP.

The results of the “best possible” setting for this dataset
are shown in Table They are similar to those of the
“top 55 rules” setting. We can see that ACnfDif and JacDif
performed well and obtained the best and the third best F'-
1 values, respectively. Jac scored second best. The RLF-1
results of the Jac and JacDif changed places. Two out of six
¢ based measures, ¢pJac and ¢ ACnf, showed the fourth best
performance, the others were slightly worse.

Lift, Cnv, Crf and Loe discovered the largest number
of true rules. However, as compared with the rule set of
ACnfDif, the increase of 10% in the number of true rules of
these IMs required almost a 600% increase in the total number
of found rules. ACnfDif could discover a very compact and
though highly representative rule set as can be seen from
its best RLF-1 value. This points to the fact that the rules
extracted by ACnfDif covered the true rule set very well.

Here again, one can see the problem of RLA and why it is
a poor performance measure. It assigned the highest value to
LC with the smallest rule set which contained only 22% of the
true rules and therefore had the lowest RLR value among all
IMs. Although RLP was also very high in this case, RLF-1
as a harmonic mean was strongly influenced by low RLR and
therefore LC was not competitive with the best measures in
terms of RLF-1.

The analysis that was focused on the rule sets extracted
by high performance measures showed they were not very
different. The sets extracted by Jac and JacDif differed by
three true rules. The rule “WASH: Linguistics_ LING—CORN:
Linguistics” produced an expectation value that was higher
than the actual Jac value, so that its JacDif value became
negative and it was ranked by JacDif as 30,221st. The other
two rules did not reach the top rules but they were in the
first 100 rules of both IMs. ¢JacDif and ¢ had the same rule
set but with different orderings. The true rules of JacDif and
oJacDif differed by five rules.

The pruning methods GCC and GRP could again improve
the results of Cnf but their results were inferior to the worst
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Table VI: Universities results, best three results are marked in bold, fnd=number of extracted rules, tf=number of true rules

found.
Measure “top 55 rules” “best possible”

tf F-1 RLF-1 | RLA || fod | tf R P F-1 RLR | RLP | RLF-1 | RLA

1. Cnf[Seb 1 1.82 4434 63.84 || 278 | 27 | 49.09 | 9.71 16.22 | 82.18 16.26 27.15 61.27
2. Jac 33 60 78.26 86.09 53 | 33 60 62.26 | 61.11 | 78.18 81.13 79.63 86.92
3. Cos 31 | 56.36 74.92 85.30 54 | 31 | 5636 | 5741 | 56.88 | 74.92 | 76.31 75.61 85.57
4. ACnf 32 | 58.18 717.35 83.95 56 | 33 60 5893 | 59.46 | 78.26 | 76.86 77.55 84.24
5. Kulc 16 | 29.09 63.53 73.97 27 16 | 29.09 | 59.26 | 39.02 | 56.22 | 114.52 75.42 84.83
6. Lift 9 16.36 47.09 58.58 || 312 | 34 | 61.82 | 10.90 | 18.53 | 83.88 14.79 25.14 54.24
7. Cnv/Crf /Loe 3 5.45 47.65 65.07 || 307 | 34 | 61.82 | 11.07 | 18.78 | 88.63 15.88 26.93 59.91
8. PS 18 | 32.73 64.06 76.14 85 | 25 | 4545 | 2941 | 3571 | 71.07 | 45.99 55.84 74.25
9. BF 8 14.55 50.60 64.72 || 116 | 20 | 36.36 | 17.24 | 23.39 | 66.96 | 31.75 43.07 63.62
10. CCnf 10 | 18.18 48.87 68.86 || 140 | 25 | 4545 | 17.86 | 25.64 | 72.88 | 28.63 41.11 64.77
11. Klos 14 | 2545 60.14 70.81 114 | 29 | 52.73 | 25.44 | 34.32 | 78.67 | 37.95 51.20 70.43
12. OD 15 | 27.27 59.44 68.30 68 17 | 3091 25 27.64 | 60.52 | 48.95 54.13 67.54
13. K 32 | 58.18 75.83 85.72 46 | 30 | 54.55 | 6522 | 59.41 | 71.12 | 85.03 77.45 87.77
14. JM 26 | 47.27 71.79 77.13 56 | 27 | 49.09 | 4821 | 48.65 | 72.70 | 71.40 72.04 77.54
15. LC 16 | 29.09 59.17 73.54 14 12 | 21.82 | 8571 | 34.78 | 48.48 | 190.48 77.29 94.34
16. GINI 18 | 32.73 61.87 66.00 85 | 24 | 43.64 | 28.24 | 3429 | 72.56 | 46.95 57.01 63.21
17. YQ/YY 1 1.82 49.62 60.98 199 | 26 | 47.27 | 13.07 | 2047 | 75.57 | 20.89 32.73 62.82
18. cs 32 | 58.18 75.83 85.56 52 | 32 | 58.18 | 61.54 | 59.81 | 73.24 | 77.46 75.29 86.66
19. L 1 1.82 45.74 64.76 || 285 | 27 | 49.09 | 947 15.88 | 82.18 15.86 26.59 59.91
20. Zhang 8 14.55 50.60 64.72 || 116 | 20 | 36.36 | 17.24 | 23.39 | 66.96 | 31.75 43.07 63.62
21. fol 31 | 56.36 74.62 85.13 54 | 31 | 56.36 | 57.41 | 56.88 | 74.62 | 76.00 75.30 85.88
22. ¢ Cnf 20 | 36.36 60.45 76.24 77 | 27 | 49.09 | 35.06 | 4091 | 69.17 | 49.41 57.65 75.72
23. ¢Jac 31 | 56.36 74.92 85.22 46 | 30 | 54.55 | 6522 | 59.41 | 71.12 | 85.03 77.45 87.77
24. PpACnf 31 | 56.36 76.44 84.74 46 | 30 | 54.55 | 6522 | 59.41 | 71.12 | 85.03 77.45 87.77
25. oy 31 | 56.36 74.92 85.22 54 | 31 | 5636 | 5741 | 56.88 | 74.62 | 76.00 75.30 85.88
26. Int 9 16.36 47.37 5882 || I11 | 17 | 3091 | 1532 | 2048 | 62.53 | 30.99 41.44 54.76
27. JacDif 32 | 58.18 78.37 84.04 50 | 32 | 58.18 64 60.95 | 78.37 86.21 82.10 87.58
28. CnfDif 14 | 25.45 59.64 61.59 91 22 40 24.18 | 30.14 | 67.08 | 40.54 50.54 61.87
29. ACnfDif 32 | 58.18 77.65 85.04 45 | 31 | 56.36 | 68.89 | 62.00 | 76.57 | 93.59 84.23 88.41
30. ¢JacDif 31 | 56.36 74.92 85.22 54 | 31 | 56.36 | 57.41 | 56.88 | 74.62 | 76.00 75.30 85.88
31. GCC 9 16.36 50.22 67.74 || 139 | 24 | 43.64 | 17.27 | 2474 | 75.76 | 29.98 42.96 62.20
32. AROMA 25 | 4545 74.78 74.87 65 | 29 | 52.73 | 44.62 | 4833 | 78.11 66.09 71.60 74.76
33. GRP 6 | 1091 5391 67.89 163 | 26 | 47.27 | 1595 | 23.85 | 78.57 | 26.51 39.65 60.90

Dif measure (CnfDif). AROMA was better than CnfDif but
it was still not as good as the other Dif measures and it was
worse than several standard ones.

Despite the good classification results of the classifier,
some of the measures discovered rules based on misclas-
sifications or ontology mismatches like “WASH: Vietname-
se_VIET—CORN: Bengali” or “WASH: Tibetan_TIB—CO-
RN: Hindi” (language courses).

E. Results of the DBpedia-Yago Dataset

The results of the DBpedia-Yago dataset for the setting “top
162 rules” are shown in Table The highest performance in
terms of F'-1 was achieved by two Dif measures with 76 found
true rules: JacDif and ¢JacDif. Several measures including
¢, k, and ¢k were able to find 73 true rules in this setting,
which was the second best result. Surprisingly, the same result
was obtained by Kulc and LC which performed poorly on
the previous two datasets. This can be explained by the large
amount of true, very balanced rules: p,s~p,~py. Among 73
true rules of Kulc, LC and ¢ there were 71 common rules
with this property. For this reason, the IMs sensitive to such
rules were superior on the dataset.

In general, the Dif measures outperformed their counter-
parts in terms of RLF-1. Except for ACnfDif, they were
also superior in terms of F-1.

In this experiment, one can again observe that the lack of
exact matches of true rules can be successfully compensated

by the higher quality of the whole rule set. It can be seen on the
RLF-1 values of JacDif and ACnfDif. The latter discovered
12 true rules less but obtained though a better RLF'-1 value,
actually the best one among all measures. This was due to the
high mean coverage of the rules without an exact match in the
true rule set. So, the average RLA; value of 98 such rules of
ACnfDif was 0.59 in contrast to 0.47 as obtained for 86 rules
of JacDif. Thus, a higher average value was the key reason
for the better RLF-1 performance of ACnfDif.

Another illustration of the difference between F-1 and
RLF-1 is the fact that although Lift and L produced compa-
rable RLF-1 values and both found at least one true rule,
their RLF-1 values were still lower than the ones from
Zhang, which did not discover any true rule. It was mostly
because Zhang had very few true rules not covered at all
by its found rule set. The other two measures had more
than two times more such rules (25 of Zhang against 62
and 68 of Lift and L, respectively). The important problem
with Zhang was that 733 rules achieved unity. This happens
when the maximum of pgp—pPp*Pap OF Pu*Pp—Pab*Pp 1S equal
to pap—pa*py Which is true for pgp=p,. This is a strong
evidence for the poor discriminating power of the measure.
Nevertheless, the selected first 162 rules (their ordering is
arbitrary and depends on how the items were ordered and
how the algorithm extracted the indices) were coincidentally
able to cover the true rules better than the corresponding rule
sets of Lift and L. For example, the rule “DB: Vein—YG:
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Table VII: DBpedia-Yago, three best results are marked in bold; fnd=number of extracted rules, tf=number of true rules found.

Measure “top 162 rules” “best possible”

tf F-1 RLF-1 | RLA fnd tf R P F-1 RLR | RLP | RLF-1 | RLA

1. Cnf/Seb 4 2.47 43.76 56.54 2133 128 | 79.01 | 6.00 | 11.15 | 93.95 7.14 13.26 62.07

2. Jac 71 | 43.83 70.89 84.23 195 89 | 5494 | 45.64 | 4986 | 77.24 | 64.17 70.10 83.79
3. Cos 72 | 44.44 70.94 84.37 193 88 | 5432 | 45.60 | 49.58 | 77.05 | 64.68 70.32 83.83

4. ACnf 71 | 43.83 70.68 84.02 213 93 | 5741 | 43.66 | 49.60 | 79.95 | 60.81 69.08 83.83
5. Kule 73 | 45.06 71.01 84.42 195 88 | 5432 | 45.13 | 4930 | 77.34 | 64.25 70.19 83.87
6. Lift 6 3.70 32.15 56.58 262 10 6.17 3.82 472 | 4192 | 2592 32.03 55.71
7. Cnv/Crf / Loe 4 2.47 43.76 56.54 2030 | 127 | 7840 | 6.26 | 11.59 | 93.46 | 7.46 13.81 62.51
8. PS 11 | 6.79 52.65 70.86 844 71 | 43.83 | 841 14.12 | 73.76 | 14.16 23.75 73.54

9. BF 4 2.47 43.76 56.54 1656 59 | 3642 | 3.56 6.49 | 71.83 7.03 12.80 58.24
10 CCnf 14 | 8.64 43.52 60.31 889 108 | 66.67 | 12.15 | 20.55 | 86.46 | 15.76 26.65 69.29
11 Klos 22 | 13.58 55.37 74.25 449 64 | 3951 | 1425 | 2095 | 71.80 | 25.90 38.07 76.61
12 OD 52 | 32.10 69.01 80.20 121 49 | 30.25 | 40.50 | 34.63 | 63.73 | 85.33 72.97 83.29
13 K 73 | 45.06 71.19 84.43 193 89 | 5494 | 46.11 | 50.14 | 77.24 | 64.83 70.49 84.15
14 JM 26 | 16.05 57.61 73.58 387 65 | 40.12 | 16.80 | 23.68 | 69.55 | 29.12 41.05 75.65
15 LC 73 | 45.06 71.80 84.18 212 93 | 5741 | 43.87 | 49.73 | 78.41 | 59.92 67.93 84.11
16. GINI 18 | 11.11 54.69 67.38 511 64 | 39.51 | 12.52 | 19.02 | 69.65 | 22.08 33.53 70.37
17. YQ/YY 0 0 35.21 74.80 || 10000 0 0 0 0 56.45 0.91 1.80 65.33
18 cs 72 | 44.44 70.94 84.37 197 89 | 5494 | 45.18 | 49.58 | 77.27 | 63.54 69.73 83.83
19. L 1 0.62 29.48 57.41 1753 117 | 7222 | 6.67 12.22 | 89.76 8.30 15.19 63.43
20. Zhang 0 0 41.93 51.65 1656 59 | 3642 | 3.56 6.49 | 71.83 7.03 12.80 58.24
21 ¢ 73 | 45.06 71.13 84.43 198 89 | 5494 | 4495 | 49.44 | 7796 | 63.78 70.16 84.32
22 ¢ Cnf 71 | 43.83 70.90 84.09 184 84 | 51.85 | 45.65 | 48.55 | 75.67 | 66.62 70.86 84.57
23 pJac 71 | 43.83 70.89 84.23 196 89 | 5494 | 4541 | 49.72 | 77770 | 64.22 70.32 84.24
24 PACNf 72 | 44.44 71.10 84.30 200 91 | 56.17 | 45.50 | 50.28 | 77.98 | 63.16 69.79 83.98
25. oK 73 | 45.06 71.13 84.43 197 89 | 5494 | 45.18 | 49.58 | 77.67 | 63.87 70.10 84.28
26. Int 0 0 22.22 49.06 268 3 1.85 1.12 1.40 | 2775 | 16.77 2091 50.94
27 JacDif 76 | 46.91 71.84 83.56 265 105 | 64.81 | 39.62 | 49.18 | 86.36 | 52.79 65.53 84.19
28 CnfDif 20 | 1235 46.96 57.56 508 86 | 53.09 | 1693 | 25.67 | 79.33 | 25.30 38.36 64.45
29 ACnfDif 64 | 39.51 75.47 81.05 219 81 50 36.99 | 42.52 | 83.25 | 61.58 70.79 82.37
30 ¢JacDif 76 | 46.91 72.54 83.78 182 86 | 53.09 | 47.25 50 7773 | 69.19 73.21 84.61
31 GCC 43 | 26.54 65.47 68.96 223 53 | 3272 | 23.77 | 27.53 | 73.89 | 53.68 62.19 70.47
32 AROMA 4 2.47 63.77 72.20 408 50 | 30.86 | 12.25 | 17.54 | 84.26 | 33.45 47.89 70.80
33 GRP 6 3.70 45.01 55.55 973 111 | 68.52 | 11.41 | 19.56 | 88.11 | 14.67 25.15 66.26

vein105418717”, was ranked by Zhang as 554th and by L as
365th. However, Zhang had a relative rule (“DB: Vein—YG:
bloodvessel105417975”) in the first 162 rules. Discriminating
better, L ranked this rule similarly to the former rule, at a
position around 360, thus producing a worse RLE-1 value.

Another measure which did not find any true rules was
YY. It has even poorer discriminating power since it is equal
to unity if p.p=p, or pupy=ps and there were 287,066 such
rules. Yet, its RLF-1 value was still higher than that of Lift
with six found true rules. This demonstrates the need for the
simultaneous use of F-1 and RLF-1 performance measures
because of their complementary nature.

In this experiment, GCC surprisingly outperformed
AROMA and GRP in terms of F'-1. It strongly improved
the F-1 score of Cnf. AROMA and GRP achieved results
comparable to that of Cnf. However, all hierarchical pruning
methods were inferior to the majority of the standard IMs.

The results of DBpedia-Yago for the “best possible” setting
are depicted in Table To speed up the process of finding
the best value, here we used only the top first 10,000 rules
and from them we calculated the best F'-1 value.

One can see that the average number of found rules for
all measures in this experiment is larger than in the other
experiments. This was also the reason why none of the
measures had an RLP greater than 100.

This time only one measure Y@Q/YY was not able to
find the true rules at all. The ¢ based measures performed
slightly better than in comparison with the same setting in

the Universities dataset. pACnf had the highest F-1 value
followed by x and ¢JacDif. Multiplying by ¢ again highly
improved the F-1 score of Cnf, ¢ Cnf had even the third best
RLF-1 value.

¢ extracted a rule set similar to that of JacDif. While the
discovered true rules of JacDif were also high ranked by ¢,
the reverse was not true. From three true rules found by ¢ in
its top 198 rules and not found by JacDif in its 265 rules,
one produced a JacDif value of zero and the other two were
ranked 533rd and 826th by JacDif. This was because the
expectations of these rules were high.

Although JacDif can often optimize the size of a discov-
ered rule set, it was not the case this time. A significant amount
of the true rules were concentrated around the places between
240th and 265th positions (10 true rule in 25 discovered ones).
Therefore, the measure had a large rule set and its precision
was penalized. ¢pJacDif was able to improve the results of its
base measures because it compressed its rule set and boosted
its precision.

Here, the pruning methods were much better than Cnf but
still worse than many standard measures.

F. Results of CL-GO Dataset

In this experiment, the partial cross-products were used as a
ground truth rule set. As said before, the serious disadvantage
of this evaluation is that the cross-products represent obvious
associations because the method connects concepts with sim-
ilar names. These associations can therefore be ranked by our
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Figure 3: Number of found true rules in the top X rules
extracted by the measures on the CL-GO dataset.

approach lower than less obvious rules. In Fig. [3] one can see
the increase in the number of found true rules among the top
X rules with growing X, for a representative group of selected
measures (mostly the measures which performed well in the
previous experiments). The graph shows that ¢ and ¢ JacDif
had the same performance (stars over triangles) and were the
best. The second best curve was produced by ¢ ACnf. The Dif
measures outperformed their counterparts. The low numbers of
true rules found in this experiment as compared to the results
of Movies, Universities and DBpedia-Yago datasets point to
the fact that other more interesting and unexpected rules were
ranked higher.

Among the top ranked rules, several interesting connections
like “CL: heterocyst—GO: nitrogen fixation” were discovered.
Heterocyst is a differentiated cyanobacterial cell that carries
out nitrogen fixation [49]]. It is important to note that such rules
could not be found by the name matching approach of [47] and
therefore were absent in the cross-products. Our approach also
found some associations between concepts with similar names
like “CL: nitrogen fixing cell-GO: nitrogen fixation” which
were nevertheless not contained in the cross-products from
the OBO foundry. Other interesting examples found were:
“CL: glandular cell of stomach—GO: acid secretion”, “CL:
spermatocyte—GO: meiosis I” and “CL: osteoclast—GO:
bone remodeling”. They all are reliable and confirm the
usability of our approach for knowledge bridging applications.

V. DISCUSSION

In the experiments on four real world datasets, the hierarchi-
cal IMs based on Jac and ACnf achieved very good results.
Cnf, on the contrary, produced some of the worst results,
partly because we did not use the minimum Support threshold.
However, its performance could be improved by multiplying
by ¢ as proposed in [35]]. Moreover, the combinations of
¢ with other measures produced also good results for the
problem studied. Some of the best results, for example, on
Movies and DBpedia-Yago datasets, were achieved by such
measures. Especially successful among them was ¢JacDif.

Similarly to ¢, x and Lift also measure the deviation from
the independence condition. x was able to retrieve many true
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rules achieving good results in terms of F'-1 performance
measure. Lift, in turn, is not normalized and favors low values
of p, or py. This explains in part its poor performance.

The experiments also showed the advantage of RLF'-1 over
RLA as a more balanced performance measure which is useful
as an extension of F'-1 assessing not only perfect but also
partial matches between the true and discovered rules.

The Dif measures were often able to extract high level
rules for several branches covering most of the true rules
and thus achieved high RLF-1 values. As stated before, they
were not always able to find all of the true rules, as the true
rules are sometimes expected from the hierarchy. However,
the RLF'-1 performance measure showed clearly that the
hierarchical measures produced generally better rule sets than
their flat counterparts. A CnfDif performed especially well: In
six experiments it showed twice the best rule set in terms of
RLF-1 and once the third best rule set.

We compared our results with those previously reported for
the datasets Universities and DBpedia-Yago. A similar study
on the Universities dataset was performed by David et. al. in
[[1] where the AROMA and GLUE approaches were compared.
We can calculate the F'-1 value of AROMA for their setting
as 41% which is similar to our results.

The DBpedia-Yago dataset was already used in a similar
experiment in [24]. Paulheim et al. applied the standard
support-confidence approach and set several minimum Support
thresholds to boost the Confidence performance. They reported
the maximum F-1 value of 25% for their approach. As
we showed, Confidence is not a good choice for this task
at all. Some other measures like x and ¢JacDif are more
appropriate, even when different minimum Support thresholds
can be used with Confidence. If the extracted rule set should
be compact and representative, the new class of hierarchical
measures presented here is more promising.

VI. CONCLUSION

In this paper, we studied hierarchical Interestingness Mea-
sures (IMs) as a means of association rule mining for con-
necting multiple ontologies. Finding interesting connections
between concepts of different ontologies enables their deep
analysis with the aim of knowledge extraction or better un-
derstanding the relations between the ontologies describing
the same domain. For this purpose, four datasets with ground
truth sets of connections between two ontologies were used
to extract association rules, 36 flat and hierarchical IMs were
compared and examined which ones are most successful in
this setup. Additionally, a new class of hierarchical IMs was
further developed.

The hierarchical pruning methods proposed in the litera-
ture: GCC, AROMA and GRP showed a lower performance
as compared with the hierarchical measures. The latter are
superior in multiple ways: they do not need parameters as
well as an additional costly post-processing step, they naturally
rank redundant rules lower and can obtain more compressed
rule sets in the setting “best possible”. In all experiments,
the Interestingness by Difference measures: JacDif, ACnfDif
and ¢JacDif achieved very good results in terms of the
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standard performance measure F-1 and the novel measure
RLF-1 which reflects the partial coverage between the true
and discovered rules. The latter showed that they could better
compress the found rule set and find more descriptive rules.
They also obtained better results as compared with other
studies reported in the literature for the datasets Universities
and DBpedia-Yago.

Roughly, there could be a division of the measures in three
groups, the measures based on the independence assumption
like ¢ as well as the Dif measures had the best results, the
measures with the performance similar to Confidence or based
on it, they had the worse results and the rest had scattered
results.

Future work comprises the use of association rules connect-
ing different ontologies in order to improve the classification
performance and to extract knowledge which can be easily
interpreted by a human to better understand the problem at
hand. A related subject would involve discovering many-to-
many relations between ontologies.
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