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Preface

These are the lecture notes based on [dD23] for the (upcoming) lecture T-systems
with a special emphasis on sparse moment problems and sparse Positivstellensätze
in the summer semester 2024 at the University of Konstanz.

The main purpose of this lecture is to prove the sparse Positiv- and Nichtnega-
tivstellensätze of Samuel Karlin (1963) and to apply them to the algebraic setting.
That means given finitely many monomials, e.g.

1, 𝑥2, 𝑥3, 𝑥6, 𝑥7, 𝑥9,

how do all linear combinations of these look like which are strictly positive or
non-negative on some interval [𝑎, 𝑏] or [0,∞), e.g. describe and even write down
all

𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥
2 + 𝑎2𝑥

3 + 𝑎3𝑥
6 + 𝑎4𝑥

7 + 𝑎5𝑥
9

with 𝑓 (𝑥) > 0 or 𝑓 (𝑥) ≥ 0 on [𝑎, 𝑏] or [0,∞), respectively.
To do this we introduce the theoretical framework in which this question can be

answered: T-systems. We study these T-systems to arrive at Karlin’s Positiv- and
Nichtnegativstellensatz but we also do not hide the limitations of the T-systems
approach.

The main limitation is the Curtis–Mairhuber–Sieklucki Theorem which essen-
tially states that every T-system is only one-dimensional and hence we can only
apply these results to the univariate polynomial case. This can also be understood as
a lesson or even a warning that this approach has been investigated and found to fail,
i.e., learning about these results and limitations shall save students and researchers
from following old footpaths which lead to a dead end.

We took great care finding the correct historical references where the results
appeared first but are perfectly aware that like people before we not always succeed.

Konstanz,
February 2024 Philipp J. di Dio
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Chapter 0
Preliminaries

Pure mathematics is, in its way, the poetry of logical ideas.

Albert Einstein [Ein35]

The purpose of this preliminary chapter is not to establish and prove results but to
clarify notation and to give the reader a survey of what will be assumed as known.

For the representation theorems of linear functionals of Daniell (Signed Daniell’s
Representation Theorem 0.17) and Riesz (Signed Riesz’ Representation Theo-
rem 0.18) more care is invested since these are the essential representation theorems
in the theory of moments in the following chapters, i.e., we include the proofs.

0.1 Sets, Relations, and Orders

We letN := {1, 2, 3, . . . } be the natural numbers,N0 := {0, 1, 2, . . . , } be the natural
numbers including zero, and as usual Z, Q, R, and C. The unit circle is denoted by
T := {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦2 = 1}.

For inclusions we use ⊆ and ⊊. To avoid any confusion we avoid the use of ⊂
since ⊂ is used in the literature by different authors either as ⊆ or ⊊.

For a set X we denote by P(X) the set of all subsets of X.
A partial order on a set X is a relation 𝑅 ⊆ X × X, usually denoted by ≤, such

that

(i) 𝑥 = 𝑦 ⇔ 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥,
(ii) 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 ⇒ 𝑥 ≤ 𝑧.

A relation ≤ is a total order if for all 𝑥, 𝑦 ∈ X we have either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥. A
vector space 𝐸 with a partial order ≤ such that

(i) 𝑥 ≤ 𝑦 and 𝑧 ∈ X ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧,
(ii) 𝑥 ≤ 𝑦 and 𝑎 ∈ [0,∞) ⇒ 𝑎𝑥 ≤ 𝑎𝑦

is called an ordered vector space. If 𝐸 is an ordered vector space then 𝐸+ := {𝑥 ∈
𝐸 | 0 ≤ 𝑥} denotes the positive cone and 𝐸− := {𝑥 ∈ 𝐸 | 𝑥 ≤ 0} denoted the negative
cone. Let 𝐶 ⊆ 𝐸 be a cone in a vector space 𝐸 . Then 𝐸 with 𝑥 ≤ 𝑦 if and only if
𝑦 − 𝑥 ∈ 𝐶 is a (partially) ordered vector space.
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2 0 Preliminaries

For a vector space 𝐸 a (linear) function 𝑓 : 𝐸 → R is called (linear) functional.
For a vector space 𝐸 the (algebraic) dual 𝐸∗ is the set of all linear functionals
𝑓 : 𝐸 → R. A functional 𝑓 : 𝐸 → R is called sublinear if 𝑓 (𝜌𝑥) ≤ 𝜌 𝑓 (𝑥) and
𝑓 (𝑥 + 𝑦) ≤ 𝑓 (𝑥) + 𝑓 (𝑦) hold for all 𝜌 ≥ 0 and 𝑥, 𝑦 ∈ 𝐸 . It is called superlinear if
− 𝑓 is sublinear.

Hahn–Banach Theorem 0.1. Let X be a real vector space, let 𝑝 : X → R be a
sublinear function, V ⊆ X be a subspace, and 𝑓 : V → R be a linear functional
such that 𝑓 (𝑥) ≤ 𝑝(𝑥) for all 𝑥 ∈ V. Then there exists a linear functional 𝐹 : X → R

such that

(i) 𝑓 (𝑥) = 𝐹 (𝑥) for all 𝑥 ∈ V, and
(ii) 𝐹 (𝑥) ≤ 𝑝(𝑥) for all 𝑥 ∈ X.

The Hahn–Banach Theorem 0.1 was proved by H. Hahn [Hah27] and S. Banach
[Ban29a, Ban29b]. A previous version is due to E. Helly [Hel12]. For more see e.g.
[Pie07] or standard functional analysis textbooks like [Yos68, Wer07].

0.2 Topology

A topology T on a set X is a set T ⊆ P(X) of subsets of X which is closed under
finite intersections and arbitrary unions, i.e., especially ∅,X ∈ T . (X,T) is called a
topological space and sets 𝐴 ∈ T are called open. A set 𝐴 ⊆ X is called closed if
X \ 𝐴 is open. The interior int 𝐴 of a set 𝐴 ⊆ X is the union of all open sets 𝑂 ⊆ 𝐴.
A subset𝑈 of a topological space (X,T) is called a neighborhood of 𝑥 if 𝑥 ∈ int𝑈.

A function 𝑓 : X → Y between two topological spaces X and Y is called
continuous at 𝑥 ∈ X if for each neighborhood 𝑉 of 𝑦 = 𝑓 (𝑥) the set 𝑓 −1 (𝑉) is a
neighborhood of 𝑥. The function 𝑓 is called continuous if it is continuous at every
𝑥 ∈ X. The set of continuous functions 𝑓 : X → Y is denoted by C(X,Y). A
set 𝐾 ⊆ X is called compact if every open cover 𝐾 ⊆ ⋃

𝑖∈𝐼 𝑈𝑖 , 𝑈𝑖 ∈ T , has a
finite subcover 𝐾 ⊆ ⋃𝑛

𝑘=1𝑈𝑖𝑘 . For a function 𝑓 : X → R we have the support
supp 𝑓 := {𝑥 ∈ X | 𝑓 (𝑥) ≠ 0}. The set of all continuous functions with compact
support are denoted by C𝑐 (X,R).

A topological space X is called Hausdorff space if each pair of distinct points
𝑥, 𝑦 ∈ X have disjoint neighborhoods. A Hausdorff spaceX is called locally compact
if every point 𝑥 ∈ X has a compact neighborhood. On Hausdorff spaces we have the
following important topological result.

Urysohn’s Lemma 0.2 (see [Ury25]). Let X be a Hausdorff space. The following
are equivalent:

(i) For every pair of disjoint closed sets 𝐴, 𝐵 ⊆ X there exist a neighborhood 𝑈
of 𝐴 and a neighborhood 𝑉 of 𝐵 such that𝑈 ∩𝑉 = ∅.

(ii) For each pair 𝐴, 𝐵 ⊆ X of disjoint closed sets there exists a continuous function
𝑓 : X → [0, 1] such that 𝑓 (𝑥) = 1 for all 𝑥 ∈ 𝐴 and 𝑓 (𝑦) = 0 for all 𝑦 ∈ 𝐵.
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0.3 Stone–Weierstrass Theorem

Stone–Weierstrass Theorem 0.3 ([Wei85] and [Sto37, pp. 467–468] or e.g. [Yos68,
p. 9]). Let X be a compact set and let 𝐵 ⊆ C(𝑋,R) be such that

(i) 𝑓 𝑔, 𝛼 𝑓 + 𝛽𝑔 ∈ 𝐵 for all 𝑓 , 𝑔 ∈ 𝐵 and 𝛼, 𝛽 ∈ R,
(ii) there exists a 𝑓 ∈ 𝐵 with 𝑓 > 0 on X, and

(iii) for all 𝑥, 𝑦 ∈ X with 𝑥 ≠ 𝑦 there is a 𝑓 ∈ 𝐵 such that 𝑓 (𝑥) ≠ 𝑓 (𝑦)

then for any 𝑓 ∈ C(X,R) there exists { 𝑓𝑛}𝑛∈N0 ⊆ 𝐵 such that

∥ 𝑓 − 𝑓𝑛∥∞
𝑛→∞−−−−→ 0.

Especially R[𝑥1, . . . , 𝑥𝑛] on any compact 𝐾 ⊆ R𝑛, 𝑛 ∈ N, is dense in C(𝐾,R)
in the sup-norm.

For more on the history of the Stone–Weierstrass Theorem 0.3 see e.g. [Pie07,
§4.5.6–§4.5.8].

0.4 Convex Geometry

A set X is convex if 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ X for all 𝑥, 𝑦 ∈ X and 𝜆 ∈ [0, 1]. A set X is a
cone if 𝜆𝑥 ∈ X for all 𝑥 ∈ X and 𝜆 ∈ [0,∞). For a set 𝐴 ⊆ R𝑛 we denote by conv 𝐴
the convex hull of 𝐴.

Carathéodory’s Theorem 0.4 (see [Car11]). Let 𝑛 ∈ N and let 𝑆 ⊆ R𝑛 be a set. If
𝑥 ∈ conv 𝐴 then there is a 𝑘 ≤ 𝑛 + 1, points 𝑥1, . . . , 𝑥𝑘 ∈ 𝐴, and 𝜆1, . . . , 𝜆𝑘 > 0 with

𝑥 = 𝜆1𝑥1 + · · · + 𝜆𝑘𝑥𝑘 and 𝜆1 + · · · + 𝜆𝑘 = 1.

For more on convex geometry we recommend [Roc72] and [Sch14].

0.5 Linear Algebra

A matrix 𝑀 = (𝑎𝑖, 𝑗 )𝑛𝑖, 𝑗=1 with 𝑎𝑖, 𝑗 = 𝑎𝑘,𝑙 if 𝑖 + 𝑗 = 𝑘 + 𝑙 is called Hankel matrix. For
a sequence 𝑠 = (𝑠𝛼)𝛼∈N0: |𝛼 | ≤2𝑛 with 𝑛 ∈ N0 we denote by

H(𝑠) := (𝑠𝛼+𝛽)𝛼,𝛽∈N0: |𝛼 | , |𝛽 | ≤𝑛 (0.1)

the Hankel matrix of 𝑠.



4 0 Preliminaries

0.6 Measures

For a set X an algebra 𝔄 is a set 𝔄 ⊆ P(X) such that ∅,X ∈ 𝔄 and for all 𝐴, 𝐵 ∈ 𝔄

we have 𝐴∩𝐵, 𝐴∪𝐵, 𝐴 \𝐵 ∈ 𝔄. If additionally
⋃∞
𝑛=1 𝐴𝑛 ∈ 𝔄 for all 𝐴𝑛 ∈ 𝔄 then 𝔄

called a 𝜎-algebra and (X,𝔄) is called a measurable space. By 𝔅(R𝑛) we denote
the Borel 𝜎-algebra. For 𝐴 ⊆ P(X) we denote by 𝜎(𝐴) the smallest 𝜎-algebra
containing 𝐴. A function 𝑓 : (X,𝔄) → (Y,𝔅) between two measurable spaces is
called measurable if 𝑓 −1 (𝐵) ∈ 𝔄 for all 𝐵 ∈ 𝔅.

A measure1 𝜇 is a function 𝜇 : 𝔄 → [0,∞] on an algebra 𝔄 such that 𝜇 is
countably additive, i.e.,

𝜇

( ∞⋃
𝑛=1

𝐴𝑛

)
=

∞∑︁
𝑛=1

𝜇(𝐴𝑛)

for all pairwise disjoint sets 𝐴𝑛 ∈ 𝔄. A measure 𝜇 on𝔅(R𝑛) is called Borel measure.
A Borel measure 𝜇 is called a Radon measure if for every 𝐴 ∈ 𝔅(R𝑛) and 𝜀 > 0
there exists a compact set 𝐾𝜀 ⊆ 𝐴 such that 𝜇(𝐴 \ 𝐾𝜀) < 𝜀. We denote by M(X)+
the set of all Borel measures on (X,𝔄). By (X,𝔄, 𝜇) we denote a measure space.
A measurable function 𝑓 : (X,𝔄) → R is called 𝜇-integrable if∫

X
| 𝑓 (𝑥) | d𝜇(𝑥) < ∞.

For any 𝑝 ≥ 1 we denote by L 𝑝 (X, 𝜇) all 𝜇-integrable functions on X. For 𝑝 = ∞,
i.e., L∞ (X, 𝜇), the essential supremum is bounded.

Since we are proving the (signed) Daniell’s Theorem and the (signed) Riesz’
Representation Theorem we will give a more detailed background on measures. For
more on measure theory we recommend [Bog07] and [Fed69].

Definition 0.5. Let X be a set. A function 𝜇 : P(X) → [0,∞] with

(i) 𝜇(∅) = 0,
(ii) 𝜇(𝐴) ≤ 𝜇(𝐵) for all 𝐴 ⊆ 𝐵 ⊆ X, and

(iii) 𝜇
(⋃∞

𝑖=1 𝐴𝑖
)
≤ ∑∞

𝑖=1 𝜇(𝐴𝑖) for all 𝐴𝑖 ∈ X

is called a (Carathéodory) outer measure.

Definition 0.6. For an outer measure 𝜇 on X a set 𝐴 ⊆ X is called (Carathéodory)
𝜇-measurable if for every 𝐸 ⊆ X we have 𝜇(𝐸) = 𝜇(𝐸 ∩ 𝐴) + 𝜇(𝐸 \ 𝐴).

Remark 0.7. Since by Definition 0.5 (iii) we always have

𝜇(𝐸) = 𝜇((𝐸 ∩ 𝐴) ∪ (𝐸 \ 𝐴)) ≤ 𝜇(𝐸 ∩ 𝐴) + 𝜇(𝐸 \ 𝐴)

it is sufficient for 𝜇-measurability to test

𝜇(𝐸) ≥ 𝜇(𝐸 ∩ 𝐴) + 𝜇(𝐸 \ 𝐴). (0.2)

1 For us all measures are non-negative unless stated otherwise. In [Bog07] the theory is developed
in greater generality.



0.6 Measures 5

An outer measure is in fact a measure on all its measurable sets.

Theorem 0.8. Let 𝜇 be an outer measure on a set X and A𝜇 ⊆ P(X) be the set of
all 𝜇-measurable sets. Then A𝜇 is a 𝜎-algebra of X and 𝜇 is a measure on (X,A𝜇).

Proof. See e.g. [Bog07, Thm. 1.11.4 (iii)]. ⊓⊔

Outer measures give another characterization of measurable functions.

Lemma 0.9. Let 𝜇 be an outer measure on X and 𝑓 : X → [−∞,∞] be a function.
Then 𝑓 is 𝜇-measurable if and only if

𝜇(𝐴) ≥ 𝜇({𝑥 ∈ 𝐴 | 𝑓 (𝑥) ≤ 𝑎}) + 𝜇({𝑥 ∈ 𝐴 | 𝑓 (𝑥) ≥ 𝑏})

for all 𝐴 ⊆ X and −∞ < 𝑎 < 𝑏 < ∞.

Proof. See e.g. [Fed69, §2.3.2(7), pp. 74–75]. ⊓⊔

Definition 0.10. An outer measure 𝜇 is called regular if for each set 𝐴 ⊆ X there
exists a 𝜇-measurable set 𝐵 ⊆ X with 𝐴 ⊆ 𝐵 and 𝜇(𝐴) = 𝜇(𝐵).

Definition 0.11. Let 𝑓 , 𝑔 : (X,A) → R be two functions. Then we define inf ( 𝑓 , 𝑔)
by

inf ( 𝑓 , 𝑔) (𝑥) := inf ( 𝑓 (𝑥), 𝑔(𝑥))

for all 𝑥 ∈ X and similarly sup( 𝑓 , 𝑔). Additionally, 𝑓 ≤ 𝑔 iff 𝑓 (𝑥) ≤ 𝑔(𝑥) for all
𝑥 ∈ X. We have 𝑓+ := sup( 𝑓 , 0), 𝑓− := 𝑓 − 𝑓+, and | 𝑓 | = 𝑓+ − 𝑓− .

Definition 0.12. Let X be a set. We call a set F of functions 𝑓 : X → R a lattice
(of functions) if the following holds:

(i) 𝑐 · 𝑓 ∈ F for all 𝑐 ≥ 0 and 𝑓 ∈ F ,
(ii) 𝑓 + 𝑔 ∈ F for all 𝑓 , 𝑔 ∈ F ,

(iii) inf ( 𝑓 , 𝑔) ∈ F for all 𝑓 , 𝑔 ∈ F ,
(iv) inf ( 𝑓 , 𝑐) ∈ F for all 𝑐 ≥ 0 and 𝑓 ∈ F , and
(v) 𝑔 − 𝑓 ∈ F for all 𝑓 , 𝑔 ∈ F with 𝑓 ≤ 𝑔.

Some authors require that a lattice of functions is a vector space (lattice space).
But for proving Daniell’s Representation Theorem 0.15 it is only necessary that a
lattice is a convex cone as in Definition 0.12.

Example 0.13. Let X be a locally compact Hausdorff space. Then C𝑐 (X,R) is a
lattice of functions and even a lattice space. ◦

Given a lattice F we get another lattice F+ by taking only the non-negative
functions.

Lemma 0.14 (see e.g. [Fed69, §2.5.1, p. 91]). Let F be a non-empty lattice on a set
X and define

F+ := { 𝑓 ∈ F | 𝑓 ≥ 0}.

Then
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(i) 𝑓+, 𝑓− , | 𝑓 | ∈ F+ for all 𝑓 ∈ F and
(ii) F+ is a non-empty lattice on X.

Proof. (i): Since inf( 𝑓 , 0) ∈ F and inf ( 𝑓 , 0) ≤ 𝑓 we have 𝑓+ = sup( 𝑓 , 0) =

𝑓 − inf ( 𝑓 , 0) ∈ F+ for all 𝑓 ∈ F . Since 𝑓 ≤ 𝑓+ = sup( 𝑓 , 0) ∈ F we have
𝑓− = 𝑓+ − 𝑓 ∈ F+ for all 𝑓 ∈ F . It follows that | 𝑓 | = 𝑓+ + 𝑓− ∈ F+ for all 𝑓 ∈ F .

(ii): Since F is non-empty there is a 𝑓 ∈ F and by (ii) we have | 𝑓 | ∈ F and
hence | 𝑓 | ∈ F+. F+ is a lattice by directly checking the Definition 0.12. ⊓⊔

0.7* Daniell’s Representation Theorem

The question when a linear functional acting on (not necessarily measurable) func-
tions is represented by a measure was already fully answered by P. J. Daniell in 1918
[Dan18], see also [Dan20].

Nowadays only the Riesz’ Representation Theorem 0.20 is given in standard
texts for the moment problem. We therefore take the time to present also Daniell’s
approach which is more general and has some interesting features the standard Riesz’
Representation Theorem 0.20 does not have.

Note, that ℎ𝑛 ↗ 𝑔 denotes a sequence (ℎ𝑛)𝑛∈N with ℎ1 ≤ ℎ2 ≤ ... ≤ 𝑔, i.e.,
point-wise non-decreasing, with lim𝑛→∞ ℎ𝑛 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ X. Equivalently,
ℎ𝑛 ↘ 0 denotes a point-wise non-increasing sequence with lim𝑛→∞ ℎ𝑛 (𝑥) = 0 for
all 𝑥 ∈ X.

Daniell’s Representation Theorem 0.15 ([Dan18], see also [Dan20] or [Fed69,
Thm. 2.5.2]). Let F be a lattice of functions on a set X and let 𝐿 : F → R be such
that

(i) 𝐿 ( 𝑓 + 𝑔) = 𝐿 ( 𝑓 ) + 𝐿 (𝑔) for all 𝑓 , 𝑔 ∈ F ,
(ii) 𝐿 (𝑐 · 𝑓 ) = 𝑐 · 𝐿 ( 𝑓 ) for all 𝑐 ≥ 0 and 𝑓 ∈ F ,

(iii) 𝐿 ( 𝑓 ) ≤ 𝐿 (𝑔) for all 𝑓 , 𝑔 ∈ F with 𝑓 ≤ 𝑔,
(iv) 𝐿 ( 𝑓𝑛) ↗ 𝐿 (𝑔) as 𝑛→ ∞ for all 𝑔 ∈ F and 𝑓𝑛 ∈ F with 𝑓𝑛 ↗ 𝑔.

Then there exists a measure 𝜇 on (X,A) with

A := 𝜎({ 𝑓 −1 ((−∞, 𝑎]) | 𝑎 ∈ R, 𝑓 ∈ F }) (0.3)

such that
𝐿 ( 𝑓 ) =

∫
X
𝑓 (𝑥) d𝜇(𝑥)

for all 𝑓 ∈ F .

We follow the proof in [Fed69, Thm. 2.5.2, pp. 92–93].

Proof. By assumption (iii) we have 𝐿 ( 𝑓 ) ≥ 𝐿 (0 · 𝑓 ) = 0 for all 𝑓 ∈ F+.
For any 𝐴 ⊆ X we say a sequence ( 𝑓𝑛)𝑛∈N suits 𝐴 if and only if 𝑓𝑛 ∈ F+ and

𝑓𝑛 ≤ 𝑓𝑛+1 for all 𝑛 ∈ N and
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lim
𝑛→∞

𝑓𝑛 (𝑥) ≥ 1 for all 𝑥 ∈ 𝐴.

Note, that we can even assume equality by replacing the 𝑓𝑛’s by 𝑓𝑛 := inf ( 𝑓𝑛, 1) ∈ F+.
Then we define

𝜇(𝐴) := inf
{

lim
𝑛→∞

𝐿 ( 𝑓𝑛)
��� ( 𝑓𝑛)𝑛∈N suits 𝐴

}
(0.4)

which is ∞ if there is no sequence ( 𝑓𝑛)𝑛∈N that suits 𝐴.
We prove that 𝜇 is an outer measure, see Definition 0.5. By assumption (iii) 𝐿 ( 𝑓𝑛)

is a non-negative increasing sequence and therefore lim𝑛→∞ 𝐿 ( 𝑓𝑛) exists and is in
[0,∞]. Hence, 𝜇 : P(X) → [0,∞]. For 𝐴 = ∅ the zero sequence 𝑓𝑛 = 0 ∈ F+ is
suited and therefore 𝜇(∅) = 0. Let 𝐴 ⊆ 𝐵 ⊆ X, then a suited sequence ( 𝑓𝑛)𝑛∈N of
𝐵 is also a suited sequence for 𝐴 and therefore 𝜇(𝐴) ≤ 𝜇(𝐵). Let 𝐴𝑖 ⊆ X, 𝑖 ∈ N,
and set 𝐴 :=

⋃∞
𝑖=1 𝐴𝑖 . Any suited sequence for 𝐴 is a suited sequences for all 𝐴𝑖 .

Assume there is an 𝐴𝑖 which has no suited sequence, then 𝐴 has no suited sequence
and 𝜇(𝐴) = ∞ ≤ ∑∞

𝑖=1 𝜇(𝐴𝑖) = ∞. So assume all 𝐴𝑖 have suited sequences, say
( 𝑓𝑖,𝑛)𝑛∈N suits 𝐴𝑖 , 𝑖 ∈ N. Then 𝑓𝑛 :=

∑𝑛
𝑖=1 𝑓𝑖,𝑛 suits 𝐴 and

𝜇(𝐴) ≤ lim
𝑛→∞

𝐿 ( 𝑓𝑛) = lim
𝑛→∞

𝑛∑︁
𝑖=1

𝐿 ( 𝑓𝑖,𝑛) ≤
∞∑︁
𝑖=1

lim
𝑚→∞

𝐿 ( 𝑓𝑖,𝑚).

Taking the infimum on the right side for all 𝐴𝑖’s retains the inequality and gives

𝜇

( ∞⋃
𝑖=1

𝐴𝑖

)
= 𝜇(𝐴) ≤

∞∑︁
𝑖=1

𝜇(𝐴𝑖).

Hence, all conditions in Definition 0.5 are fulfilled and 𝜇 is an outer measure.
Since 𝜇 is an outer measure on X by Theorem 0.8 the set Ã of all 𝜇-measurable

sets of X is a 𝜎-algebra and 𝜇 is a measure on (X, Ã).
It remains to show that all 𝑓 ∈ F are 𝜇-measurable, 𝜇 is a measure on (X,A)

with A = 𝜎({ 𝑓 −1 ((−∞, 𝑎]) | 𝑎 ∈ R, 𝑓 ∈ F }), and 𝐿 ( 𝑓 ) =
∫
X 𝑓 (𝑥) d𝜇(𝑥) for all

𝑓 ∈ F .
Since 𝑓 = 𝑓+ − 𝑓− with 𝑓+, 𝑓− ∈ F+ it is sufficient to show that every function in

F+ is 𝜇-measurable. So let 𝑓 ∈ F+. To show that 𝑓 is 𝜇-measurable it is sufficient to
show that 𝐴 := 𝑓 −1 ((−∞, 𝑎]) = {𝑥 ∈ X | 𝑓 (𝑥) ≤ 𝑎} ∈ A for all 𝑎 ∈ R, i.e., 𝐴 is
𝜇-measurable by Definition 0.6 resp. Remark 0.7 if (0.2) holds for all 𝐸 ⊆ X. From
𝐸 \ 𝐴 = 𝐸 ∩ (X \ 𝐴) = 𝐸 ∩ {𝑥 ∈ X | 𝑓 (𝑥) > 𝑎} we have to verify

𝜇(𝐸) ≥ 𝜇
(
{𝑥 ∈ 𝐸 | 𝑓 (𝑥) ≤ 𝑎}

)
+ 𝜇

(
{𝑥 ∈ 𝐸 | 𝑓 (𝑥) > 𝑎}

)
and by Lemma 0.9 this is equivalent to

𝜇(𝐸) ≥ 𝜇
(
{𝑥 ∈ 𝐸 | 𝑓 (𝑥) ≤ 𝑎}︸                  ︷︷                  ︸

=:𝐸𝑎

)
+ 𝜇

(
{𝑥 ∈ 𝐸 | 𝑓 (𝑥) ≥ 𝑏}︸                  ︷︷                  ︸

=:𝐸𝑏

)
(0.5)
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for all 𝑎 < 𝑏. For 𝑎 < 0 or 𝜇(𝐸) = ∞ (0.5) is trivial, so assume 𝑎 ≥ 0 and 𝜇(𝐸) < ∞.
Let (𝑔𝑛)𝑛∈N be a sequence that suits 𝐸 and set

ℎ := (𝑏 − 𝑎)−1 · [inf ( 𝑓 , 𝑏) − inf ( 𝑓 , 𝑎)] ∈ F+ and 𝑘𝑛 := inf (𝑔𝑛, ℎ) ∈ F+.

Then we have 0 ≤ 𝑘𝑛+1 − 𝑘𝑛 ≤ 𝑔𝑛+1 − 𝑔𝑛,

ℎ(𝑥) = 1 for all 𝑥 ∈ X with 𝑓 (𝑥) ≥ 𝑏,

and

ℎ(𝑥) = 0 for all 𝑥 ∈ X with 𝑓 (𝑥) ≤ 𝑎.

It follows that (𝑘𝑛)𝑛∈N suits 𝐸𝑏 and (𝑔𝑛 − 𝑘𝑛)𝑛∈N suits 𝐸𝑎. Therefore,

lim
𝑛→∞

𝐿 (𝑔𝑛) = lim
𝑛→∞

[𝐿 (𝑔𝑛 − 𝑘𝑛) + 𝐿 (𝑘𝑛)] ≥ 𝜇(𝐸𝑎) + 𝜇(𝐸𝑏)

and taking the infimum on the left side retains the inequality and proves (0.5). Hence,
all 𝑓 ∈ F+ and therefore all 𝑓 ∈ F are 𝜇-measurable.

Let us show that 𝜇 remains a measure on (X,A). Since all 𝑓 ∈ F are 𝜇- and
A-measurable we have

𝑓 −1 ((−∞, 𝑎]) ∈ Ã

for all 𝑎 ∈ R and 𝑓 ∈ F . Therefore,

A = 𝜎({ 𝑓 −1 ((−∞, 𝑎]) | 𝑎 ∈ R, 𝑓 ∈ F }) ⊆ Ã

is a 𝜎-algebra and we can restrict 𝜇 resp. Ã to A. 𝜇 is a measure on (X,A).
We show that 𝐿 ( 𝑓 ) =

∫
X 𝑓 (𝑥) d𝜇(𝑥) holds for all 𝑓 ∈ F+. Let 𝑓 ∈ F+ and set

𝑓𝑡 := inf ( 𝑓 , 𝑡)

for 𝑡 ≥ 0. If 𝜀 > 0 and 𝑘 ∈ N then

0 ≤ 𝑓𝑘𝜀 (𝑥) − 𝑓(𝑘−1) 𝜀 (𝑥) ≤ 𝜀 for all 𝑥 ∈ X,
𝑓𝑘𝜀 (𝑥) − 𝑓(𝑘−1) 𝜀 (𝑥) = 𝜀 for all 𝑥 ∈ X with 𝑓 (𝑥) ≥ 𝑘𝜀,

and

𝑓𝑘𝜀 (𝑥) − 𝑓(𝑘−1) 𝜀 (𝑥) = 0 for all 𝑥 ∈ X with 𝑓 (𝑥) ≤ (𝑘 − 1)𝜀.

The constant sequence (𝜀−1 · ( 𝑓𝑘𝜀 − 𝑓(𝑘−1) 𝜀))𝑛∈N suits {𝑥 ∈ X | 𝑓 (𝑥) ≥ 𝑘𝜀} and
consequently

𝐿 ( 𝑓𝑘𝜀 − 𝑓(𝑘−1) 𝜀) ≥ 𝜀 · 𝜇({𝑥 ∈ X | 𝑓 (𝑥) ≥ 𝑘𝜀})

≥
∫
X
𝑓(𝑘+1) 𝜀 (𝑥) − 𝑓𝑘𝜀 (𝑥) d𝜇(𝑥)
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≥ 𝜀 · 𝜇({𝑥 ∈ X | 𝑓 (𝑥) ≥ (𝑘 + 1)𝜀}) ≥ 𝐿 ( 𝑓(𝑘+2) 𝜀 − 𝑓(𝑘+1) 𝜀).

Summing with respect to 𝑘 from 1 to 𝑛 we find

𝐿 ( 𝑓𝑛𝜀) ≥
∫
X
𝑓(𝑛+1) 𝜀 (𝑥) − 𝑓𝜀 (𝑥) d𝜇(𝑥) ≥ 𝐿 ( 𝑓(𝑛+2) 𝜀 − 𝑓2𝜀)

and since 𝑓𝑛𝜀 ↗ 𝑓 as 𝑛→ ∞ we get from assumption (iv) for 𝑛→ ∞

𝐿 ( 𝑓 ) ≥
∫
X
𝑓 (𝑥) − 𝑓𝜀 (𝑥) d𝜇(𝑥) ≥ 𝐿 ( 𝑓 − 𝑓2𝜀)

which gives again from assumption (iv) for 𝜀 ↘ 0

𝐿 ( 𝑓 ) ≥
∫
X
𝑓 (𝑥) d𝜇(𝑥) ≥ 𝐿 ( 𝑓 ).

Hence, 𝐿 ( 𝑓 ) =
∫
X 𝑓 (𝑥) d𝜇(𝑥) for all 𝑓 ∈ F+.

Finally, for all 𝑓 ∈ F we have 𝑓 = 𝑓+ − 𝑓− with 𝑓+, 𝑓− ∈ F+ which implies∫
X
𝑓 (𝑥) d𝜇(𝑥) =

∫
X
𝑓+ (𝑥) d𝜇(𝑥) −

∫
X
𝑓− (𝑥) d𝜇(𝑥) = 𝐿 ( 𝑓+) − 𝐿 ( 𝑓−) = 𝐿 ( 𝑓 )

where the last equality follows from 𝑓+ = 𝑓 + 𝑓− and assumption (i). ⊓⊔

The most impressive part is that the functional 𝐿 : F → R lives only on a
lattice F of functions 𝑓 : X → R where X is a set without any structure. Daniell’s
Representation Theorem 0.15 provides a representing measure 𝜇 by (0.4) including
the 𝜎-algebra A of the measurable space (X,A) by (0.3).
Remark 0.16. In Daniell’s Representation Theorem 0.15 the assumption (iv) is
equivalent to

(iv’) 𝐿 (ℎ𝑛) ↘ 0 as 𝑛→ ∞ for all ℎ𝑛 ∈ F with ℎ𝑛 ↘ 0 as 𝑛→ ∞

since 𝑓𝑛 ↗ 𝑔 implies 𝑓𝑛 ≤ 𝑔 and 0 ≤ ℎ𝑛 = 𝑔 − 𝑓𝑛 ∈ F :

𝐿 (𝑔) = 𝐿 (𝑔 − 𝑓𝑛 + 𝑓𝑛) = 𝐿 (𝑔 − 𝑓𝑛) + 𝐿 ( 𝑓𝑛)︸︷︷︸
↗𝐿 (𝑔)

= 𝐿 (ℎ𝑛)︸︷︷︸
↘0

+ 𝐿 ( 𝑓𝑛). ◦

The representing measure 𝜇 in Daniell’s Representation Theorem 0.15 is not
unique. But the representing measure 𝜇 constructed in (0.4) has further properties,
see e.g. [Fed69, §2.5.3].

Daniell’s Representation Theorem 0.15 also has a signed version.

Signed Daniell’s Representation Theorem 0.17 ([Dan18], see also [Fed69, Thm.
2.5.5]). Let F be a lattice of functions on some set X and let 𝐿 : F → R be such
that for all 𝑓 , 𝑔, ℎ1, ℎ2, ℎ3, . . . ∈ F we have
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(a) 𝐿 ( 𝑓 + 𝑔) = 𝐿 ( 𝑓 ) + 𝐿 (𝑔),
(b) 𝐿 (𝑐 · 𝑓 ) = 𝑐 · 𝐿 ( 𝑓 ) for all 𝑐 ≥ 0,
(c) sup 𝐿

(
{𝑘 ∈ F | 0 ≤ 𝑘 ≤ 𝑓 }

)
< ∞,

(d) ℎ𝑛 ↗ 𝑔 as 𝑛→ ∞ implies 𝐿 (ℎ𝑛) → 𝐿 (𝑔) as 𝑛→ ∞.

Let 𝐿+ and 𝐿− be the functionals on F+ defined by

𝐿+ ( 𝑓 ) := sup 𝐿
(
{𝑘 ∈ F | 0 ≤ 𝑘 ≤ 𝑓 }

)
and

𝐿− ( 𝑓 ) := − inf 𝐿
(
{𝑘 ∈ F | 0 ≤ 𝑘 ≤ 𝑓 }

)
for all 𝑓 ∈ F+. Then there exist F+ regular measures 𝜇+ and 𝜇− on X such that

(i) 𝐿+ ( 𝑓 ) =
∫
X 𝑓 (𝑥) d𝜇+ (𝑥) for all 𝑓 ∈ F+,

(ii) 𝐿− ( 𝑓 ) =
∫
X 𝑓 (𝑥) d𝜇− (𝑥) for all 𝑓 ∈ F+, and

(iii) 𝐿 ( 𝑓 ) = 𝐿+ ( 𝑓 ) − 𝐿− ( 𝑓 ) for all 𝑓 ∈ F .

The proof is taken from [Fed69, pp. 96–97] and uses Daniell’s Representation
Theorem 0.15.

Proof. Let 𝑓+ ∈ F+. Then 𝑓 ≥ 𝑔 ∈ F+ implies 𝑓 ≥ 𝑓 − 𝑔 ∈ F+ and

𝐿 (𝑔) − 𝐿− ( 𝑓 ) ≤ 𝐿 (𝑔) + 𝐿 ( 𝑓 − 𝑔) ≤ 𝐿 (𝑔) + 𝐿+ ( 𝑓 ).

Hence,
𝐿+ ( 𝑓 ) − 𝐿− ( 𝑓 ) ≤ 𝐿 ( 𝑓 ) ≤ −𝐿− ( 𝑓 ) + 𝐿+ ( 𝑓 )

so that
𝐿 ( 𝑓 ) = 𝐿+ ( 𝑓 ) − 𝐿− ( 𝑓 ).

Now let 𝑓 , 𝑔 ∈ F+. If 𝑓 + 𝑔 ≥ ℎ ∈ F+ then

𝑓 ≥ 𝑘 := inf ( 𝑓 , ℎ) ∈ F+ and 𝑔 ≥ ℎ − 𝑘 ∈ F+

and hence
𝐿+ ( 𝑓 ) + 𝐿+ (𝑔) ≥ 𝐿 (𝑘) + 𝐿 (ℎ − 𝑘) = 𝐿 (ℎ).

Therefore, 𝐿+ ( 𝑓 )+𝐿+ (𝑔) ≥ 𝐿+ ( 𝑓 +𝑔). Since the opposite inequality is clear, we have
that 𝐿+ is additive on F+. Additionally, 𝐿+ is positively homogeneous and monotone.

We now show that 𝐿+ preserves increasing convergence. Suppose ℎ𝑛 ↗ 𝑔 as
𝑛↗ ∞ with 𝑔, ℎ𝑛 ∈ F+. If 𝑔 ≥ 𝑘 ∈ F+ then 𝑓𝑛 := inf (ℎ𝑛, 𝑘) ↗ 𝑘 as 𝑛↗ ∞, i.e.,

𝐿 (𝑘) = lim
𝑛→∞

𝐿 ( 𝑓𝑛) ≤ lim
𝑛→∞

𝐿+ (ℎ𝑛).

Hence, 𝐿+ (ℎ𝑛) ↗ 𝐿+ (𝑔) as 𝑛↗ ∞. By Daniell’s Representation Theorem 0.15 we
have that there is a F+ regular measure 𝜇+ on X such that 𝐿+ ( 𝑓 ) =

∫
𝑓 (𝑥) d𝜇+ (𝑥)

for all 𝑓 ∈ F+.
Similarly, we have 𝐿− ( 𝑓 ) =

∫
𝑓 (𝑥) d𝜇− (𝑥) for some measure 𝜇− on X. ⊓⊔
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0.8 Riesz’ Representation Theorem

The Riesz’ Representation Theorem 0.20 was developed in several stages. A first
version for continuous functions on the unit interval [0, 1] is due to F. Riesz [Rie09].
It was extended by Markov to some non-compact spaces [Mar38] and then by
Kakutani to locally compact Hausdorff spaces [Kak41]. It is therefore sometimes
also called the Riesz–Markov–Kakutani Representation Theorem.

However, we will see now that the general version already follows from the Signed
Daniell’s Representation Theorem 0.17 and Daniell’s Representation Theorem 0.15
from 1918 [Dan18] combined with Urysohn’s Lemma 0.2 from 1925 [Ury25], see
also [Fed69, Sect. 2.5]. Urysohn’s Lemma 0.2 is used to ensure that C𝑐 (X,R) is
large enough.

At first let us give the signed version.

Signed Riesz’ Representation Theorem 0.18 (see e.g. [Fed69, Thm. 2.5.13]). Let
X be a locally compact Hausdorff space. If 𝐿 : C𝑐 (X,R) → R is a linear functional
such that

sup 𝐿 ({𝑔 ∈ C𝑐 (X,R) | 0 ≤ 𝑔 ≤ 𝑓 }) < ∞ (0.6)

for all 𝑓 ∈ C𝑐 (X,R)+ then there exist C𝑐 (X,R) regular measures 𝜇+ and 𝜇− such
that

𝐿 ( 𝑓 ) =
∫
X
𝑓 (𝑥) d𝜇+ (𝑥) −

∫
X
𝑓 (𝑥) d𝜇− (𝑥)

for all 𝑓 ∈ C𝑐 (X,R).

The following proof is taken from [Fed69, Thm. 2.5.13, pp. 106–107].

Proof. It is sufficient to verify condition (d) in the Signed Daniell’s Representation
Theorem 0.17.

Let 𝑔, ℎ1, ℎ2, . . . ∈ C𝑐 (X,R)+ be such that ℎ𝑛 ↗ 𝑔 as 𝑛 → ∞. By Urysohn’s
Lemma 0.2 there exists a 𝑓 ∈ C𝑐 (X,R)+ such that 𝑓 (𝑥) = 1 for all 𝑥 ∈ supp 𝑔. Then

𝑐 := sup {|𝐿 (𝑘) | | 𝑘 ∈ C𝑐 (X,R) and 0 ≤ 𝑘 ≤ 𝑓 } < ∞.

For each 𝜀 > 0 the intersection of all compact sets

𝑆𝑛 := {𝑥 ∈ X | 𝑔(𝑥) ≥ ℎ𝑛 (𝑥) + 𝜀}

is empty. Since 𝑆𝑛+1 ⊂ 𝑆𝑛 for all 𝑛 ∈ N it follows that 𝑆𝑛 = ∅ when 𝑛 is sufficiently
large. But 𝑆𝑛 = ∅ implies 0 ≤ 𝑔 − ℎ𝑛 ≤ 𝜀 𝑓 and |𝐿 (𝑔 − ℎ𝑛) | ≤ 𝜀𝑐 which proves
condition (d). ⊓⊔

Corollary 0.19 (see e.g. [Fed69, §2.5.14]). If in the Signed Riesz’ Representation
Theorem 0.18 we additionally have that the topology of X has a countable base then
𝜇+ and 𝜇− are Radon measures.

Since positivity of 𝐿 on C𝑐 (X,R)+ implies (0.6) by
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0 ≤ 𝑔 ≤ 𝑓 ⇒ 0 ≤ 𝑓 − 𝑔 ⇒ 0 ≤ 𝐿 ( 𝑓 − 𝑔) ⇒ 0 ≤ 𝐿 (𝑔) ≤ 𝐿 ( 𝑓 ) < ∞

we have as an immediate consequence of the Signed Riesz’ Representation Theo-
rem 0.18 the non-negative version.

Riesz’ Representation Theorem 0.20. Let X be a locally compact Hausdorff space
and 𝐿 : C𝑐 (X,R) → R be a non-negative linear functional on C𝑐 (X,R)+. Then
there exists a measure 𝜇 on X such that

𝐿 ( 𝑓 ) =
∫
X
𝑓 (𝑥) d𝜇(𝑥)

for all 𝑓 ∈ C𝑐 (X,R).
If additionally X as a topological space has a countable base then 𝜇 can be

chosen to be a Radon measure.

From a topological point of view measures can also be introduced abstractly as
linear functionals over certain spaces, see e.g. [Trè67, p. 216]. The Riesz representa-
tion theorem is then used to show the equivalence of the measure theoretic approach
and the topological approach.

0.9* Riesz Decomposition

The results in this section about the Riesz decomposition will be used only in
Theorem 2.13 (ii) about adapted cones and extensions of linear functionals on these.
Theorem 2.13 is not used for the T-systems and can be omitted on first reading.

In Definition 0.12 we introduced lattices. Lattice spaces fulfill the following.

Riesz Decomposition Lemma 0.21 (see e.g. [Cho69, Lem. 10.5]). Let F be a lattice
space and 𝑥, 𝑦1, 𝑦2 ≥ 0 with 𝑥 ≤ 𝑦1 + 𝑦2. Then there exist 𝑥1, 𝑥2 ≥ 0 such that

𝑥 = 𝑥1 + 𝑥2, 𝑥1 ≤ 𝑦1, and 𝑥2 ≤ 𝑦2

hold.

While the previous results holds for lattice spaces, also other spaces have this
property.

Definition 0.22. Let 𝐹 be an ordered vector space. We say 𝐹 has the Riesz decom-
position property if

𝑥, 𝑦1, 𝑦2 ∈ 𝐹+ : 𝑥 ≤ 𝑦1 + 𝑦2 ⇒ ∃𝑥1, 𝑥2 ∈ 𝐹+ : 𝑥 = 𝑥1 + 𝑥2, 𝑥1 ≤ 𝑦1, 𝑥2 ≤ 𝑦2.
(0.7)

We have the following corollary.

Corollary 0.23 (see e.g. [Cho69, Cor. 10.6]). Let 𝐹 be an ordered vector space with
the Riesz decomposition property, let 𝑥1, . . . , 𝑥𝑛 ∈ 𝐹+, and let 𝑦1, . . . , 𝑦𝑚 ∈ 𝐹+ with
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𝑛∑︁
𝑖=1

𝑥𝑖 =

𝑚∑︁
𝑗=1

𝑦 𝑗 .

Then for all 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚 there exist 𝑧𝑖, 𝑗 ∈ 𝐹+ such that

𝑥𝑖 =

𝑚∑︁
𝑗=1

𝑧𝑖, 𝑗 and 𝑦 𝑗 =

𝑛∑︁
𝑖=1

𝑧𝑖, 𝑗 .
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Chapter 1
Moments and Moment Functionals

Extremes in nature equal ends produce;
In man they join to some mysterious use.

Alexander Pope: Essay on Man, Epistle II

In this chapter we deal with the basics of moments and moment functionals. More
on moments and moment functionals can be found e.g. in [Sch17, Lau09, Mar08]
and the classical literature [ST43, AK62, KN77].

1.1 Moments and Moment Functionals

Definition 1.1. Let (X,𝔄, 𝜇) be a measure space and let 𝑓 : X → R be a 𝜇-
integrable function. The real number∫

X
𝑓 (𝑥) d𝜇(𝑥)

is called the 𝑓 -moment of 𝜇.

The name moment comes from the most famous example of moments: X = R3

and 𝑓 (𝑥, 𝑦, 𝑧) = 𝑓𝛼 (𝑥, 𝑦, 𝑧) = 𝑥𝛼1 · 𝑦𝛼2 · 𝑧𝛼3 . Then∫
R3

(𝑥2 + 𝑦2) · 𝜌(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧

is the 𝑧-rotational moment of a body with mass distribution 𝜌 in R3.
In the modern theory of moments the investigation is about moment functionals.

Definition 1.2. Let (X,𝔄) be a measurable space and let V be a vector space of
real-valued measurable functions on (X,𝔄). A linear functional 𝐿 : V → R is
called a moment functional if there exists a measure 𝜇 such that

𝐿 ( 𝑓 ) =
∫
X
𝑓 (𝑥) d𝜇(𝑥) (1.1)

for all 𝑓 ∈ V. Any measure 𝜇 such that (1.1) holds is called a representing measure
of 𝐿. We denote by M(𝐿) the set of all representing measures of 𝐿.

17
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Corollary 1.3. Let (X,𝔄) be a measurable space, V be a space of measurable
functions 𝑓 : X → R, and let 𝐿 : V → R be a moment functional. Then M(𝐿) is
convex.

Proof. See Problem 1.2. ⊓⊔

While a moment functional comes from a measure, conversely a measure 𝜇 gives
a moment functional on 𝜇-integrable functions.

Definition 1.4. Let (X,𝔄) be a measurable space and let V be a vector space
of measurable functions on (X,𝔄). Given a measure 𝜇 such that all 𝑓 ∈ V are
𝜇-integrable then

𝐿𝜇 : V → R, 𝑓 ↦→ 𝐿𝜇 ( 𝑓 ) :=
∫
X
𝑓 (𝑥) d𝜇(𝑥)

is the moment functional generated by 𝜇.

We did not give any restrictions to the possible representing measures 𝜇 of a
moment functional 𝐿. In practice and hence also in theory restrictions can and even
must be made, e.g., supp 𝜇 ⊆ 𝐾 for some 𝐾 ∈ 𝔄.

Definition 1.5. Let (X,𝔄) be a measurable space, 𝐾 ∈ 𝔄 be a measurable set, let
V be a vector space of measurable functions 𝑓 : X → R, and let 𝐿 : V → R be a
linear functional. We call 𝐿 to be a 𝐾-moment functional if there exists a measure 𝜇
on X such that

𝐿 ( 𝑓 ) =
∫
X
𝑓 (𝑥) d𝜇(𝑥)

for all 𝑓 ∈ V and supp 𝜇 ⊆ 𝐾 .

A linear functional 𝐿 : V → R can also be described by the numbers 𝑠𝑖 := 𝐿 ( 𝑓𝑖)
for a basis { 𝑓𝑖}𝑖∈𝐼 of V.

Definition 1.6. Let (X,𝔄) be a measurable space, let V be a space of measurable
functions 𝑓 : X → R with basis { 𝑓𝑖}𝑖∈𝐼 for some index set 𝐼. Given any real
sequence 𝑠 = (𝑠𝑖)𝑖∈𝐼 the linear functional 𝐿𝑠 : V → R defined by

𝐿𝑠 ( 𝑓𝑖) := 𝑠𝑖

for all 𝑖 ∈ 𝐼 is called the Riesz functional of 𝑠. The sequence 𝑠 is called a moment
sequence if 𝐿𝑠 : V → R is a moment functional.

Example 1.7. Let 𝑛 ∈ N, X = R𝑛 with 𝔄 = 𝔅(R𝑛) the Borel 𝜎-algebra, and let
V = R[𝑥1, . . . , 𝑥𝑛] be the ring of polynomials. Then a real sequence 𝑠 = (𝑠𝛼)𝛼∈N𝑛

0
gives a linear functional 𝐿𝑠 : R[𝑥1, . . . , 𝑥𝑛] → R by 𝐿𝑠 (𝑥𝛼) := 𝑠𝛼 for all 𝛼 ∈ N𝑛0 .
The matrix H(𝑠) = (𝑠𝛼+𝛽)𝛼,𝛽∈N𝑛

0
is the Hankel matrix of the sequence 𝑠 (resp. the

linear functional 𝐿𝑠). ◦

In practice and hence also in theory we have the special case that V is finite
dimensional.
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Definition 1.8. Let (X,𝔄) be a measurable space, let V be a vector space of
measurable functions 𝑓 : X → R, and 𝐿 : V → R be a moment functional. Then
𝐿 is called a truncated moment functional if V is finite dimensional.

1.2 Determinacy and Indeterminacy

We introduced the set of all representing measures M(𝐿) of a moment functional in
Definition 1.2. We have the special and important case when M(𝐿) is a singleton,
i.e., the moment functional 𝐿 has a unique representing measure.

Definition 1.9. Let (X,𝔄) be a measurable space, V a real vector space of measur-
able functions 𝑓 : X → R, and let 𝐿 : V → R be a moment functional. If M(𝐿) is
a singleton, i.e., 𝐿 has a unique representing measure, then 𝐿 is called determinate.
Otherwise it is call indeterminate.

Corollary 1.10. Let (X,𝔄) be a measurable space, V a real vector space of
measurable functions 𝑓 : X → R, and let 𝐿 : V → R be an indeterminate moment
functional. Then 𝐿 has infinitely many representing measures.

Proof. See Problem 1.3. ⊓⊔

The first example of an indeterminate moment functional/sequence was given by
T. J. Stieltjes [Sti94]. In [Sti94, p. J.105, §55] he states that all

𝑠𝑘 =

∫ ∞

0
𝑥𝑘 ·

(
1 + 𝑐 · sin( 4√𝑥)

)
· 𝑒− 4√𝑥 d𝑥 (𝑘 ∈ N0)

are independent on 𝑐 ∈ [−1, 1].
The first explicit example then follows in [Sti94, pp. J.106–J.107, §56].

Example 1.11 (see [Sti94, pp. J.106–J.107, §56]). Let 𝑐 ∈ [−1, 1] and

𝑓 (𝑥) = 1
√
𝜋
· exp

(
−1

2
(ln 𝑥)2

)
for all 𝑥 ∈ [0,∞). Then the measure 𝜇𝑐 ∈ M(R) defined by

d𝜇𝑐 (𝑥) := [1 + 𝑐 · sin(2𝜋 ln 𝑥)] · 𝑓 (𝑥) d𝑥

has the moments
𝑠𝑘 =

∫ ∞

0
𝑥𝑘 d𝜇𝑐 (𝑥) = 𝑒

1
4 (𝑘+1)2

for all 𝑘 ∈ N0, i.e., independent on 𝑐 ∈ [−1, 1]. ◦

Criteria for determinacy and indeterminacy are well-studied, see e.g. [Sch17] and
reference therein.
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Problems

1.1 Let 𝑛 ∈ N and let 𝐿 : R[𝑥1, . . . , 𝑥𝑛] → R be a moment functional with a
representing measure 𝜇 such that supp 𝜇 ⊆ 𝐾 for some compact 𝐾 ⊂ R𝑛. Show that
𝐿 is determinate, i.e., show that 𝜇 is the unique representing measure of 𝐿.

Hint: Use the Stone–Weierstrass Theorem 0.3.

1.2 Prove Corollary 1.3.

1.3 Prove Corollary 1.10.



Chapter 2
Choquet’s Theory and Adapted Spaces

Progress imposes not only new possibilities for the future
but new restrictions.

Norbert Wiener [Wie88, p. 46]

This chapter is devoted to the theory of Choquet and the concept of adapted spaces.
The results can also be found in e.g. [Cho69, Phe01, Sch17].

2.1 Extensions of Linear Functionals preserving Positivity

We remind the reader that a convex cone 𝐶 ⊆ 𝐹 in a real vector space 𝐹 induces an
order ≤ on 𝐹, i.e., for any 𝑥, 𝑦 ∈ 𝐹 we have 𝑥 ≤ 𝑦 iff 𝑦 − 𝑥 ∈ 𝐶, see Section 0.1.

Lemma 2.1 (see e.g. [Cho69, Prop. 34.1]). Let 𝐹 be a real vector space, 𝐸 ⊆ 𝐹 be
a linear subspace, and let 𝐶 ⊆ 𝐹 be a convex cone which induces the order ≤ on 𝐹.
Then the following are equivalent:

(i) 𝐹 + 𝐶 is a vector space.
(ii) 𝐹 + 𝐶 = 𝐹 − 𝐶.

(iii) Any 𝑥 ∈ (𝐹 + 𝐶) ∪ (𝐹 − 𝐶) is majorized by some 𝑧 ∈ 𝐹, i.e., 𝑥 ≤ 𝑧, and is
minorized by some 𝑦 ∈ 𝐹, i.e., 𝑦 ≤ 𝑥.

Proof. See Problem 2.1. ⊓⊔

Definition 2.2. Let 𝐹 be a real vector space and 𝐶 ⊆ 𝐹 be a convex cone. A linear
functional 𝐿 : 𝐹 → R is called 𝐶-positive if 𝐿 ( 𝑓 ) ≥ 0 holds for all 𝑓 ∈ 𝐶. 𝐿 is
called strictly 𝐶-positive if 𝐿 ( 𝑓 ) > 0 holds for all 𝑓 ∈ 𝐶 \ {0}.

Theorem 2.3 (see e.g. [Cho69, Thm. 34.2]). Let 𝐹 be a real vector space, 𝐸 ⊆ 𝐹

be a linear subspace, and 𝐶 ⊆ 𝐹 be a convex cone with 𝐹 = 𝐸 + 𝐶. Then any
(𝐶∩𝐸)-positive linear functional 𝐿 : 𝐸 → R can be extended to a𝐶-positive linear
functional 𝐿̃ : 𝐹 → R.

The extension 𝐿̃ is unique if and only if for all 𝑥 ∈ 𝐸 we have

sup{𝐿 (𝑦) | 𝑦 ≤ 𝑥, 𝑦 ∈ 𝐹} = inf{𝐿 (𝑦) | 𝑥 ≤ 𝑦, 𝑦 ∈ 𝐹}. (2.1)

21
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The proof is taken from [Cho69, vol. 2, p. 270–271]. It adapts the idea behind the
proof of the Hahn–Banach Theorem 0.1.

Proof. Let H := {(𝐻, ℎ)}𝐻 subspace: 𝐸⊆𝐻⊆𝐹 where ℎ : 𝐻 → R extends 𝐿. The
family H has a natural order by the extension property, i.e., we have (𝐻1, ℎ1) ≤
(𝐻2, ℎ2) if ℎ2 : 𝐻2 → R is an extension of ℎ1 : 𝐻1 → R. By Zorn’s Lemma H has
a maximal element (𝐺, 𝑔). We have to show 𝐺 = 𝐹. For that it is sufficient that 𝐸 is
a hyperplane in 𝐹 and 𝐿 can be extended to 𝐹.

Let 𝑥0 ∈ 𝐹 \ 𝐸 . By Lemma 2.1 (iii) there exist 𝑦, 𝑧 ∈ 𝐸 with 𝑦 ≤ 𝑥0 ≤ 𝑧. We
define

𝛼 := sup{𝐿 (𝑦) | 𝑦 ≤ 𝑥0 and 𝑦 ∈ 𝐸}

and
𝛽 := inf{𝐿 (𝑧) | 𝑥0 ≤ 𝑧 and 𝑧 ∈ 𝐸}.

Since 𝐿 is𝐶-positive we have𝛼 ≤ 𝛽 and any extension 𝐿̃must satisfy𝛼 ≤ 𝐿̃ (𝑥0) ≤ 𝛽.
We show that for each 𝛾 ∈ [𝛼, 𝛽] there exists an extension 𝐿̃ with 𝐿̃ (𝑥0) = 𝛾.

Each point 𝑢 ∈ 𝐹 can be uniquely written as 𝑢 = 𝑦 − 𝜆𝑥0 with 𝑦 ∈ 𝐸 and 𝜆 ∈ R.
Define 𝐿̃ (𝑢) := 𝐿 (𝑦) −𝜆𝛾. Then 𝐿̃ is a linear extension of 𝐿 and we have to show that
𝐿̃ is 𝐶-positive. Let 𝑢 ∈ 𝐶, i.e., 𝑦 ≥ 𝜆𝑥0. If 𝜆 > 0 then 𝑥0 ≤ 𝑦/𝜆 and 𝛽 ≤ 𝐿 (𝑦/𝜆).
Hence, 𝐿 (𝑦) ≥ 𝜆𝛽 ≥ 𝜆𝛾 and so 𝐿̃ (𝑢) ≥ 0. If on the other hand 𝜆 < 0 then 𝑥0 ≥ 𝑦/𝜆
and 𝛼 ≥ 𝐿 (𝑦/𝜆) which implies 𝐿 (𝑦) ≥ 𝜆𝛼 ≥ 𝜆𝛾 and 𝐿̃ (𝑢) ≥ 0. At last, if 𝜆 = 0
then 𝐿̃ (𝑢) = 𝐿̃ (𝑦) ≥ 0. In summary, we proved that 𝐿̃ is 𝐶-positive.

For the uniqueness it is sufficient to note that if (2.1) holds for all 𝑥 ∈ 𝐸 then 𝐿̃ is
uniquely determined since every extension 𝐿̃ arises from this construction. If on the
other hand 𝛼 < 𝛽, i.e., (2.1) does not hold, then some extension (𝐻, ℎ) ∈ H is not
unique for 𝐻 and consequently 𝐿̃ is not a unique extension of 𝐿. ⊓⊔

From the previous proof we see that by redoing the proof of the Hahn–Banach
Theorem the uniqueness criteria (2.1) can be incorporated. A second proof using the
Hahn–Banach Theorem is much shorter but loses the uniqueness condition (2.1),
see e.g. [Sch17, Prop. 1.7].

A third proof of Theorem 2.3 follows from the following lemma.

Lemma 2.4 (see e.g. [Cho69, Prop. 34.3]). Let 𝐸 be a real vector space, let 𝑔 :
𝐸 → R be superlinear and let ℎ : 𝐸 → R be sublinear. Then there exists a linear
map 𝑓 : 𝐸 → R such that 𝑔 ≤ 𝑓 ≤ ℎ.

Proof. Equip𝐸 with the topology of all semi-norms. Then 𝑝(𝑥) := sup{ℎ(𝑥), ℎ(−𝑥)}
is a semi-norm and ℎ ≤ 𝑝. Since 𝑝 is continuous and ℎ is convex we have that ℎ is
continuous. Thus 𝑔 and ℎ can be separated by a closed hyperplane. ⊓⊔

Lemma 2.4 not only gives a third proof of Theorem 2.3 but also has a generaliza-
tion which is known as Strassen’s Theorem [Str65].

Strassen’s Theorem states that if (Y, 𝜇) is a measure space, {ℎ𝑦 : 𝐸 → R}𝑦∈Y
is a family of sublinear maps, and let 𝑙 : 𝐸 → R be a linear map with

𝑙 ≤
∫
Y
ℎ𝑦 d𝜇(𝑦).
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Then there exists a family {𝑙𝑦 : 𝐸 → R}𝑦∈Y of linear maps 𝑙𝑦 with 𝑙𝑦 ≤ ℎ𝑦 such
that

𝑙 =

∫
Y
𝑙𝑦 d𝜇(𝑦).

For more on Strassen’s Theorem see e.g. [Edw78, Ska93, Lin99] and references
therein.

2.2 Adapted Spaces of Continuous Functions

We now come to the adapted spaces. To define them we need the following.

Definition 2.5. Let X be a locally compact Hausdorff space and 𝑓 , 𝑔 ∈ C(X,R)+.
We say 𝑓 dominates 𝑔 if for any 𝜀 > 0 there is an ℎ𝜀 ∈ C𝑐 (X,R) such that
𝑔 ≤ 𝜀 𝑓 + ℎ𝜀 .

Equivalent expressions are the following.

Lemma 2.6 (see e.g. [Sch17, Lem. 1.4]). Let X be a locally compact Hausdorff
space and let 𝑓 , 𝑔 ∈ C(X,R)+. Then the following are equivalent:

(i) 𝑓 dominates 𝑔.
(ii) For every 𝜀 > 0 there exists a compact set 𝐾𝜀 ⊆ X such that 𝑔(𝑥) ≤ 𝜀 · 𝑓 (𝑥)

holds for all 𝑥 ∈ X \ 𝐾𝜀 .
(iii) For every 𝜀 > 0 there exists an 𝜂𝜀 ∈ C𝑐 (X,R) with 0 ≤ 𝜂𝜀 ≤ 1 such that

𝑔 ≤ 𝜀 · 𝑓 + 𝜂𝜀 · 𝑔.

Proof. See Problem 2.2. ⊓⊔

The main definition of this chapter is the following.

Definition 2.7. Let X be a locally compact Hausdorff space and let 𝐸 ⊆ C(X,R) be
a vector space. Then 𝐸 is called an adapted space if the following conditions hold:

(i) 𝐸 = 𝐸+ − 𝐸+,
(ii) for all 𝑥 ∈ X there is a 𝑓 ∈ 𝐸+ such that 𝑓 (𝑥) > 0, and

(iii) every 𝑔 ∈ 𝐸+ is dominated by some 𝑓 ∈ 𝐸+.

The space C𝑐 (X,R)+ is of special interest because of the Riesz’ Representation
Theorem 0.20. The following result shows that any 𝑔 ∈ C𝑐 (X,R)+ is dominated
(and even bounded) by some 𝑓 ∈ 𝐸+ for any given adapted space 𝐸 ⊆ C(X,R).

Lemma 2.8. Let X be a locally compact Hausdorff space, 𝑔 ∈ C𝑐 (X,R)+, and let
𝐸 ⊆ C(X,R) be an adapted space. Then there exists a 𝑓 ∈ 𝐸+ such that 𝑓 > 𝑔.

Proof. See Problem 2.6. ⊓⊔
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2.3 Existence of Integral Representations

One important reason adapted spaces have been introduced is to get the following
representation theorem. It is a general version of Haviland’s Theorem 3.4 and will
be used to solve most moment problems in an efficient way.

Basic Representation Theorem 2.9 (see e.g. [Cho69, Thm. 34.6]). Let X be a
locally compact Hausdorff space, 𝐸 ⊆ C(X,R) be an adapted subspace, and let
𝐿 : 𝐸 → R be a linear functional. The following are equivalent:

(i) The functional 𝐿 is 𝐸+-positive.
(ii) 𝐿 is a moment functional, i.e., there exists a (Radon) measure 𝜇 on X such that

(a) all 𝑓 ∈ 𝐸 are 𝜇-integrable and
(b) 𝐿 ( 𝑓 ) =

∫
X 𝑓 (𝑥) d𝜇(𝑥) holds for all 𝑓 ∈ 𝐸 .

The following proof is adapted from [Cho69, vol. 2, p. 276–277].

Proof. The direction (ii) ⇒ (i) is clear. It is therefore sufficient to prove (i) ⇒ (ii).
Define

𝐹 := { 𝑓 ∈ C(X,R) | | 𝑓 | ≤ 𝑔 for some 𝑔 ∈ 𝐸+}. (2.2)

Then 𝐹+ is a convex cone. We have 𝐹 = 𝐸 + 𝐹+. To see this let 𝑓 ∈ 𝐹 and write
𝑓 = −𝑔 + ( 𝑓 + 𝑔) where | 𝑓 | ≤ 𝑔 for some 𝑔 ∈ 𝐸+, i.e., 𝑓 ∈ 𝐸 + 𝐹+ and hence
𝐹 ⊆ 𝐸 + 𝐹+. The inclusion 𝐸 + 𝐹+ ⊆ 𝐹 is clear and we therefore have 𝐹 = 𝐸 + 𝐹+.

By Theorem 2.3 we can extend 𝐿 to a 𝐹+-positive linear functional 𝐿̃ : 𝐹 → R.
By Lemma 2.8 we have C𝑐 (X,R) ⊆ 𝐹 and hence by the Riesz’ Representation
Theorem 0.20 there exists a representing Radon measure 𝜇 on X of 𝐿̃ |C𝑐 (X,R) .

We need to show that 𝜇 is also a representing measure of 𝐿. Let 𝑓 ∈ 𝐸+. Since 𝜇
is Radon we have∫

X
𝑓 (𝑥) d𝜇(𝑥) = sup

{∫
X
𝜑(𝑥) d𝜇(𝑥)

���� 𝜑 ∈ C𝑐 (X,R), 𝜑 ≤ 𝑓

}
≤ 𝐿̃ ( 𝑓 ) = 𝐿 ( 𝑓 )

(2.3)
and hence 𝑓 is 𝜇-integrable. Since 𝐸 = 𝐸+ − 𝐸+ we have that all 𝑓 ∈ 𝐸 are
𝜇-integrable.

Then
𝐾 ( 𝑓 ) := 𝐿̃ ( 𝑓 ) −

∫
X
𝑓 (𝑥) d𝜇(𝑥) (2.4)

for all 𝑓 ∈ 𝐹 defines a 𝐹+-positive linear functional on 𝐹 which vanishes on
C𝑐 (X,R). For every 𝑔 ∈ 𝐸+ there is an 𝑓 ∈ 𝐸+ dominating 𝑔. Let 𝜀 > 0 and
ℎ𝜀 ∈ C𝑐 (X,R) be such that 𝑔 ≤ 𝜀 𝑓 + ℎ𝜀 . Then 0 ≤ 𝐾 (𝑔) ≤ 𝜀 · 𝐾 ( 𝑓 ) 𝜀→0−−−−→ 0, i.e.,
𝐾 = 0 on 𝐸+ and hence on 𝐸 which proves that 𝜇 is a representing measure of 𝐿. ⊓⊔

We actually proved that 𝐿 can be extended to 𝐿̃ on 𝐹 in (2.2) and that 𝜇 is a
representing measure for 𝐿̃. This is included in (ii-b).

For the uniqueness of the representing measure 𝜇 of 𝐿 we have the following.
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Corollary 2.10 (see e.g. [Cho69, Cor. 34.7]). Let X be a locally compact Hausdorff
space, 𝐸 ⊆ C(X,R) be an adapted space, and let 𝐿 : 𝐸 → R be a 𝐸+-positive
linear functional. Then the following are equivalent:

(i) The representing measure 𝜇 of 𝐿 from the Basic Representation Theorem 2.9
is unique.

(ii) For any 𝑓 ∈ C𝑐 (X,R) and 𝜀 > 0 there are 𝑓1, 𝑓2 ∈ 𝐸 with 𝑓1 ≤ 𝑓 ≤ 𝑓2 and
0 ≤ 𝑇 ( 𝑓2 − 𝑓1) ≤ 𝜀.

Proof. Reformulating (i) we get that the measure 𝜇 must be uniquely defined by the
extension of 𝐿 : 𝐸 → R to 𝐿̃ : 𝐸 + C𝑐 (X,R) → R. By Theorem 2.3 eq. (2.1) this
is equivalent to

sup{𝐿 (𝜑) | 𝜑 ≤ 𝑓 , 𝜑 ∈ 𝐸} = inf{𝐿 (𝜑) | 𝑓 ≤ 𝜑, 𝜑 ∈ 𝐸}.

But this is equivalent to our condition (ii), i.e., we showed (i) ⇔ (ii). ⊓⊔

2.4* Adapted Cones

A generalization of adapted spaces is to go to adapted cones, i.e., dropping the vector
space property. This is presented in [Cho69] but not included in [Sch17] and we want
to show it to the reader for the sake (or at least a glimpse) of completeness. It is not
used in the T-systems and can be omitted on first reading.

Definition 2.11. Let 𝐹 be an ordered vector space and let 𝐸 ⊆ 𝐹 be a convex cone.
For 𝑥, 𝑦 ∈ 𝐹 with 𝑥, 𝑦 ≥ 0 we say that 𝑦 dominates 𝑥 (relative to 𝐸) if for any 𝜀 > 0
there exists a 𝑧𝜀 ∈ 𝐸 such that 𝑥 ≤ 𝜀𝑦 + 𝑧𝜀 .

For two convex cones 𝐶, 𝐸 ⊆ 𝐹+ we say that (𝐶, 𝐸) are adapted (cones) if every
𝑥 ∈ 𝐶 is dominated by some 𝑥′ ∈ 𝐶 (relative to 𝐸) and for each 𝑔 ∈ 𝐸 there is an
𝑓 ∈ 𝐶 so that 𝑔 ≤ 𝑓 .

The previous definition is a generalization of Definition 2.5. The convex cone 𝐶
has the role of C𝑐 (X,R)+, 𝐹 has the role of C(X,R), and 𝐸 is the adapted space.

Lemma 2.12 (see e.g. [Cho69, Prop. 35.3]). Let 𝐹 be an ordered vector space, let
(𝐶, 𝐸) be adapted cones, and let 𝐿 : 𝐸 → R be a positive linear functional. Then

𝐿 |𝐸 = 0 ⇒ 𝐿 |𝐶 = 0.

Proof. Let 𝑥 ∈ 𝐶. Since (𝐶, 𝐸) are adapted cones there exists a 𝑥′ ∈ 𝐶 such that for
any 𝜀 > 0 there is a 𝑧𝜀 ∈ 𝐸 with

0 ≤ 𝑥 ≤ 𝜀𝑥′ + 𝑧𝜀 .

Since 𝐿 ≥ 0 on 𝐸 we have

0 ≤ 𝐿 (𝑥) ≤ 𝜀𝐿 (𝑥′) 𝜀→0−−−−→ 0
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which proves 𝐿 |𝐶 = 0. ⊓⊔

Theorem 2.13 (see e.g. [Cho69, Thm. 35.4]). Let 𝐹 be an ordered vector space.

(i) Let 𝐶 ⊆ 𝐹+ be a convex cone and let 𝐿 : 𝐶 → [0,∞) be a positive linear
functional. Define

𝐶̂ := {𝑔 ∈ 𝐹+ | 𝑔 ≤ 𝑓 for some 𝑥 ∈ 𝐶}.

Then 𝐿 has an extension to a positive linear functional 𝐿̂ : 𝐶̂ → [0,∞).
(ii) Let (𝐶, 𝐸) be adapted cones such that𝐸 ⊆ 𝐶̂ and 𝐶̂ has the Riesz decomposition

property (0.7). Then for each 𝑓 ∈ 𝐶̂ we have

𝐿̂ ( 𝑓 ) = sup
{
𝐿̂ (𝑔)

�� 𝑔 ∈ 𝐸 with 𝑔 ≤ 𝑓
}
.

Proof. (i): First, extend 𝐿 by linearity to the vector space 𝐶 − 𝐶. Let 𝐹0 := 𝐶̂ − 𝐶̂.
Then 𝐹0 = 𝐶 − 𝐶 + 𝐶̂ = −𝐶 + 𝐶̂. By Theorem 2.3 𝐿 extends to a 𝐶̂-positive linear
functional on 𝐹0.

(ii): Define 𝐿0 : 𝐶̂ → R by

𝐿0 ( 𝑓 ) := sup{𝐿 (𝑔) | 𝑔 ∈ 𝐸 with 𝑔 ≤ 𝑓 }.

Hence, 0 ≤ 𝐿0 ( 𝑓 ) ≤ 𝐿̂ ( 𝑓 ) for all 𝑓 ∈ 𝐶̂. Clearly, 𝐿0 (𝜆 𝑓 ) = 𝜆𝐿0 ( 𝑓 ) holds for all
𝜆 ≥ 0 and 𝑓 ∈ 𝐶̂. Additionally,

𝐿0 ( 𝑓1 + 𝑓2) = sup
{
𝐿̂ (𝑔)

�� 𝑔 ∈ 𝐸, 𝑔 ≤ 𝑓1 + 𝑓2
}

which is by the Riesz decomposition property (0.7)

= sup
{
𝐿̂ (𝑔1 + 𝑔2)

�� 𝑔1, 𝑔2 ∈ 𝐸, 𝑔1 ≤ 𝑓1, 𝑔2 ≤ 𝑓2
}

= 𝐿0 ( 𝑓1) + 𝐿0 ( 𝑓2)

for all 𝑓1, 𝑓2 ∈ 𝐶̂ and hence by linearity extension 𝐿0 is linear on 𝐹0.
We now show at last that 𝐿 − 𝐿0 = 0 on 𝐶̂. Since (𝐶, 𝐸) are adapted cones we

have that (𝐶̂, 𝐸) are adapted cones. We have 𝐿 ( 𝑓 ) − 𝐿0 ( 𝑓 ) = 0 for all 𝑓 ∈ 𝐸 and
hence by Lemma 2.12 we have 𝐿 = 𝐿0 on 𝐶̂ which proves (ii). ⊓⊔

Theorem 2.13 (ii) is the analogue of extending a Radon measure on C𝑐 (X,R) to
continuous integrable functions.

Example 2.14 (see e.g. [Cho69, Exm. 35.5]). Let (X,𝔄, 𝜇) be a measure space.
Let 𝐶 = (L1 (X, 𝜇))+ and 𝐸 = L∞ (X, 𝜇) ∩ (L1 (X, 𝜇))+. Then (𝐶, 𝐸) are adapted
cones. Hence, every positive linear functional is uniquely determined by its values
on L∞ ∩ L1. ◦
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2.5* Continuity of Positive Linear Functionals

At the end of this chapter we want to point out some continuity results. But we will
leave out the proofs since these results will not be used for our T-system treatment.

Theorem 2.15 (see e.g. [Cho69, Thm. 36.1]). Let 𝐸 be an ordered Hausdorff
topological vector space such that 𝐸 = 𝐸+ − 𝐸+ and let either

(i) int 𝐸+ ≠ ∅

or

(ii) 𝐸 is complete, metrizable, and 𝐸+ is closed.

Then any positive linear functional 𝐿 : 𝐸 → R is continuous.

The previous results holds for general convex pointed cones in 𝐸 .

Corollary 2.16 (see e.g. [Cho69, Cor. 36.1]). Let 𝐸 be a Hausdorff topological
vector space and 𝑃 ⊂ 𝐸 be a convex pointed cone. The following hold:

(i) If int 𝑃 ≠ ∅ then any linear 𝑃-positive functional 𝑇 : 𝐸 → R is continuous.
(ii) If 𝐸 is complete, metrizable, 𝑃 is closed, and 𝐸 = 𝑃 − 𝑃, then any linear

𝑃-positive functional 𝑇 : 𝐸 → R is continuous.

Further conditions for continuity can be found e.g. in [Cho69, Ch. 36] or [SW99].
[Cho69, Ch. 36] also gives results for positive linear functionals on C∗-algebras, the
Schwartz space S(R𝑛,R), Lipschitz functions, and on general vector lattices.

Another direction is more operator theoretic and deals with linear functionals
over algebras. An algebra A is a (complex) vector space with a multiplication
· : A ×A → A, (𝑎, 𝑏) ↦→ 𝑎𝑏 such that

(i) 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐,
(ii) (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐, and

(iii) 𝛼(𝑎𝑏) = (𝛼𝑎)𝑏 = 𝑎(𝛼𝑏)

for all 𝑎, 𝑏, 𝑐 ∈ A and𝛼 ∈ C. An element 1 ∈ A is called unit element if 1𝑎 = 𝑎 = 𝑎1
for all 𝑎 ∈ A. A ∗-algebra is an algebra with an involution ∗ : A → A, 𝑎 ↦→ 𝑎∗

that also satisfies (𝑎𝑏)∗ = 𝑏∗𝑎∗ and (𝛼𝑎)∗ = 𝛼𝑎∗. A linear functional 𝐿 : A → C

is called non-negative if 𝐿 (𝑎∗𝑎) ≥ 0 for all 𝑎 ∈ A. A topological ∗-algebra is a ∗-
algebra with a topology T such that the multiplication and involution are continuous.
A Fréchet topological ∗-algebra is a topological algebra which is a Fréchet space,
i.e., a complete metrizable locally convex space. An example is C[𝑥1, . . . , 𝑥𝑛].

We have the following.

Theorem 2.17 ([Xia59] and [NW72]; or e.g. [Sch90, Thm. 3.6.1]). Let A be a
Fréchet topological ∗-algebra with unit element and let 𝐿 : A → C be a linear
functional. If 𝐿 is non-negative then it is continuous.

A more general statement is [NW72, Thm. 1]. For more see e.g. [Sch90, Ch. 3.6]
and references therein.
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Problems

2.1 Prove Lemma 2.1.

2.2 Prove Lemma 2.6.

2.3 Let X be a compact topological Hausdorff space and let 𝐸 ⊆ C(X,R) be a
subspace such that there exists an 𝑒 ∈ 𝐸 such that 𝑒(𝑥) > 0 for all 𝑥 ∈ X. Show that
𝐸 is an adapted space.

2.4 Let 𝑛 ∈ N and X ⊆ R𝑛 be closed. Show that R[𝑥1, . . . , 𝑥𝑛] on X is an adapted
space.

2.5 Let 𝑛 ∈ N, X ⊆ R𝑛 be closed, and let 𝐸 ⊆ R[𝑥1, . . . , 𝑥𝑛] be an adapted space.
Show that if 𝐸 is finite dimensional then X is compact.

2.6 Prove Lemma 2.8.



Chapter 3
The Classical Moment Problems

Those who cannot remember the past are condemned to repeat it.

George Santayana [San05]

In this chapter we give several classical solutions of moment problems: the Stieltjes,
Hamburger, and Hausdorff moment problem. Additionally, we collect other clas-
sical results such as Haviland’s Theorem, Richter’s Theorem on the existence of
finitely atomic representing measures for truncated moment functionals, and Boas’
Theorem on the existence of signed representing measures for any linear functional
𝐿 : R[𝑥1, . . . , 𝑥𝑛] → R.

3.1 Classical Results

In this section we give a chronological list of the early moment problems which have
been solved. We will explicitly discuss the historical (first) proofs of these results.
Our modern proofs here will be based on the Choquet’s theory from Chapter 2 and
for a modern operator theoretic approach see e.g. [Sch17].

The first moment problem was solved by T. J. Stieltjes [Sti94]. He was the first
who fully stated the moment problem, solved the first one, and by doing that also
introduced the integral theory named after him: the Stieltjes integral.

Stieltjes’ Theorem 3.1. Let 𝑠 = (𝑠𝑖)𝑖∈N0 be a real sequence. The following are
equivalent:

(i) 𝑠 is a [0,∞)-moment sequence (Stieltjes moment sequence).
(ii) 𝐿𝑠 (𝑝) ≥ 0 for all 𝑝 ∈ Pos( [0,∞)).

(iii) 𝐿𝑠 (𝑝2) ≥ 0 and 𝐿𝑋𝑠 (𝑝2) = 𝐿𝑠 (𝑥 · 𝑝2) ≥ 0 for all 𝑝 ∈ R[𝑥].
(iv) 𝑠 and 𝑋𝑠 = (𝑠𝑖+1)𝑖∈N0 are positive semidefinite.
(v) H(𝑠) ⪰ 0 and H(𝑋𝑠) ⪰ 0 for all 𝑑 ∈ N0.

Proof. See Problem 3.1. ⊓⊔

In the original proof of Stieltjes’ Theorem 3.1 Stieltjes [Sti94] does not use
non-negative polynomials. Instead he uses continued fractions and introduces new
sequences which we (nowadays) denote by 𝑠 and 𝑋𝑠.

29
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Stieltjes only proves (i) ⇔ (iv). The implication (i) ⇔ (ii) is Haviland’s Theo-
rem 3.4, (ii)⇔ (iii) is the description of Pos( [0,∞)), and (iv)⇔ (v) is a reformulation
of 𝑠 and 𝑋𝑠 being positive semi-definite.

The next moment problem was solved by H. L. Hamburger [Ham20, Satz X and
Existenztheorem (§8, p. 289)].

Hamburger’s Theorem 3.2. Let 𝑠 = (𝑠𝑖)𝑖∈N0 be a real sequence. The following are
equivalent:

(i) 𝑠 is a R-moment sequence (Hamburger moment sequence or short moment
sequence).

(ii) 𝐿𝑠 (𝑝) ≥ 0 for all 𝑝 ∈ Pos(R).
(iii) 𝐿𝑠 (𝑝2) ≥ 0 for all 𝑝 ∈ R[𝑥].
(iv) 𝑠 is positive semidefinite.
(v) H(𝑠) ⪰ 0.

Proof. See Problem 3.2. ⊓⊔

Hamburger proved similar to Stieltjes the equivalence (i) ⇔ (iv) via continued
fractions. In [Ham20, Satz XIII] Hamburger solves the full moment problem by
approximation with truncated moment problems. This was later in a slightly more
general framework proved in [Sto01], see also Section 3.5. Hamburger needed to
assume that the sequence of measures 𝜇𝑘 (which he called “Belegungen” and denoted
by dΦ(𝑘 ) (𝑢)) to converge to some measure 𝜇 (condition 2 of [Ham20, Satz XIII]).
Hamburgers additional condition 2 is nowadays replaced by the vague convergence
and the fact that the solution set of representing measures is vaguely compact [Sch17,
Thm. 1.19], i.e., it assures the existence of a 𝜇 as required by Hamburger in the
additional condition 2.

Shortly after Hamburger the moment problem on [0, 1] was solved by F. Hausdorff
[Hau21a, Satz II and III].

Hausdorff’s Theorem 3.3. Let 𝑠 = (𝑠𝑖)𝑖∈N0 be a real sequence. The following are
equivalent:

(i) 𝑠 is a [0, 1]-moment sequence (Hausdorff moment sequence).
(ii) 𝐿𝑠 (𝑝) ≥ 0 for all 𝑝 ∈ Pos( [0, 1]).

(iii) 𝐿𝑠 (𝑝2) ≥ 0, 𝐿𝑋𝑠 (𝑝2) ≥ 0, and 𝐿 (1−𝑋)𝑠 (𝑝2) ≥ 0 for all 𝑝 ∈ R[𝑥].
(iv) 𝑠, 𝑋𝑠, and (1 − 𝑋)𝑠 are positive semidefinite.
(v) H(𝑠) ⪰ 0, H(𝑋𝑠) ⪰ 0, and H((1 − 𝑋)𝑠) ⪰ 0.

Proof. See Problem 3.3. ⊓⊔

Hausdorff proved the equivalence (i)⇔ (iii) via so called C-sequences. In [Toe11]
Toeplitz treats general linear averaging methods. In [Hau21a] Hausdorff uses these.
Let the infinite dimensional matrix 𝜆 = (𝜆𝑖, 𝑗 )𝑖, 𝑗∈N0 be row-finite, i.e., for every row
𝑖 only finitely many 𝜆𝑖, 𝑗 are non-zero. Then the averaging method

𝐴𝑖 =
∑︁
𝑗∈N0

𝜆𝑖, 𝑗𝑎 𝑗
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shall be consistent: If 𝑎 𝑗 → 𝛼 converges then 𝐴𝑖 → 𝛼 converges to the same limit.
Toeplitz proved a necessary and sufficient condition on 𝜆 for this property. Hausdorff
uses only part of this property. He calls a matrix (𝜆𝑖, 𝑗 )𝑖, 𝑗∈N0 with the property that
a convergent sequence (𝑎 𝑗 ) 𝑗∈N0 is mapped to a convergent sequence (𝐴 𝑗 ) 𝑗∈N0 (the
limit does not need to be preserved) a C-matrix (convergence preserving matrix).
Hausdorff gives the characterization of C-matrices [Hau21a, p. 75, conditions (A)
– (C)]. Additionally, if 𝜆 is a C-matrix and a diagonal matrix with diagonal entries
𝜆𝑖,𝑖 = 𝑠𝑖 then 𝑠 = (𝑠𝑖)𝑖∈N0 is called a C-sequence. The equivalence (i) ⇔ (iii) is then
shown by Hausdorff in the result that a sequence is a [0, 1]-moment sequence if and
only if it is a C-sequence [Hau21a, p. 102].

A much simpler approach to solve the𝐾-moment problem for any closed𝐾 ⊆ R𝑛,
𝑛 ∈ N, was presented by E. K. Haviland in [Hav36, Theorem], see also [Hav35,
Theorem] for the earlier case 𝐾 = R𝑛. He no longer used continued fractions
but employed the Riesz’ Representation Theorem 0.20, i.e., representing a linear
functional by integration, and connected the existence of a representing measure to
the non-negativity of the linear functional on

Pos(𝐾) := { 𝑓 ∈ R[𝑥1, . . . , 𝑥𝑛] | 𝑓 ≥ 0 on 𝐾}. (3.1)

Haviland’s Theorem 3.4. Let 𝑛 ∈ N, 𝐾 ⊆ R𝑛 be closed, and 𝑠 = (𝑠𝛼)𝛼∈N𝑛
0

be a
real sequence. The following are equivalent:

(i) 𝑠 is a 𝐾-moment sequence.
(ii) 𝐿𝑠 (𝑝) ≥ 0 for all 𝑝 ∈ Pos(𝐾).

Proof. See Problem 3.4. ⊓⊔

As noted before, in [Hav35, Theorem] Haviland proves “only” the case 𝐾 = R𝑛

with the extension method by M. Riesz. In [Hav36, Theorem] this is extended to any
closed 𝐾 ⊆ R𝑛. The idea to do so is attributed by Haviland to A. Wintner [Hav36,
p. 164]:

A. Wintner has subsequently suggested that it should be possible to extend this result [[Hav35,
Theorem]] by requiring that the distribution function [measure] solving the problem have
a spectrum [support] contained in a preassigned set, a result which would show the well-
known criteria for the various standard special momentum problems (Stieltjes, Herglotz
[trigonometric], Hamburger, Hausdorff in one or more dimensions) to be put particular
cases of the general 𝑛-dimensional momentum problem mentioned above. The purpose of
this note [[Hav36]] is to carry out this extension.

In [Hav36] after the general Theorem 3.4 Haviland then goes through all the
classical results (Theorems 3.1 to 3.3, and the Herglotz (trigonometric) moment
problem on the unit circle T which we did not included here) and shows how all
these results (i.e., conditions on the sequences) are recovered from the at this point
known representations of non-negative polynomials.

For the Hamburger moment problem (Hamburger’s Theorem 3.2) Haviland uses

Pos(R) =
{
𝑓 2 + 𝑔2 �� 𝑓 , 𝑔 ∈ R[𝑥]

}
(3.2)
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which was already known to D. Hilbert [Hil88]. We prove a stronger version of (3.2)
in Theorem 10.7. For the Stieltjes moment problem (Stieltjes’ Theorem 3.1) he uses

Pos( [0,∞)) =
{
𝑓 2
1 + 𝑓 2

2 + 𝑥 · (𝑔2
1 + 𝑔

2
2)

�� 𝑓1, 𝑓2, 𝑔1, 𝑔2 ∈ R[𝑥]
}

(3.3)

with the reference to G. Pólya and G. Szegö (previous editions of [PS64, PS70]). In
[PS64, p. 82, ex. 45] the representation (3.3) is still included while it was already
known before, see [ST43, p. 6, footnote], that

Pos( [0,∞)) =
{
𝑓 2 + 𝑥 · 𝑔2 �� 𝑓 , 𝑔 ∈ R[𝑥]

}
(3.4)

is sufficient. Also in [Sch17, Prop. 3.2] the representation (3.3) is used, not the
simpler representation (3.4). We prove a stronger version of (3.4) in Corollary 10.2.

For the [−1, 1]-moment problem Haviland uses

Pos( [−1, 1]) =
{
𝑓 2 + (1 − 𝑥2) · 𝑔2 �� 𝑓 , 𝑔 ∈ R[𝑥]

}
. (3.5)

For the Hausdorff moment problem (Hausdorff’s Theorem 3.3) he uses that any
strictly positive polynomial on [0, 1] is a linear combination of

𝑥𝑚 · (1 − 𝑥) 𝑝 (3.6)

with 𝑚, 𝑝 ∈ N0, 𝑝 ≥ 𝑚, and with non-negative coefficients.
Haviland gives this with the references to a previous edition of [PS70]. This result

is actually due to S. N. Bernstein [Ber12, Ber15].

Bernstein’s Theorem 3.5 ([Ber12] for (i), [Ber15] for (ii); or see e.g. [Ach56, p. 30]
or [Sch17, Prop. 3.4]). Let 𝑓 ∈ C([0, 1],R) and let

𝐵 𝑓 ,𝑑 (𝑥) :=
𝑑∑︁
𝑘=0

(
𝑑

𝑘

)
· 𝑥𝑘 · (1 − 𝑥)𝑑−𝑘 · 𝑓

(
𝑘

𝑑

)
(3.7)

be the Bernstein polynomials of 𝑓 with 𝑑 ∈ N. Then the following hold:

(i) The polynomials 𝐵 𝑓 ,𝑑 converge uniformly on [0, 1] to 𝑓 , i.e.,

∥ 𝑓 − 𝐵 𝑓 ,𝑑 ∥∞
𝑑→∞−−−−→ 0.

(ii) If additionally 𝑓 ∈ R[𝑥] with 𝑓 > 0 on [0, 1] then there exist a constant
𝐷 = 𝐷 ( 𝑓 ) ∈ N and constants 𝑐𝑘,𝑙 ≥ 0 for all 𝑘, 𝑙 = 0, . . . , 𝐷 such that

𝑓 (𝑥) =
𝐷∑︁
𝑘,𝑙=0

𝑐𝑘,𝑙 · 𝑥𝑘 · (1 − 𝑥)𝑙 .

(iii) The statements (i) and (ii) also hold on [0, 1]𝑛 for any 𝑛 ∈ N. Especially every
𝑓 ∈ R[𝑥1, . . . , 𝑥𝑛] with 𝑓 > 0 on [0, 1]𝑛 is of the form
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𝑓 (𝑥) =
𝐷∑︁

𝛼1 ,...,𝛽𝑛=0
𝑐𝛼1 ,...,𝛽𝑛 · 𝑥𝛼1

1 · · · 𝑥𝛼𝑛𝑛 · (1 − 𝑥1)𝛽1 · · · (1 − 𝑥𝑛)𝛽𝑛

for some 𝐷 ∈ N and 𝑐𝛼1 ,...,𝛽𝑛 ≥ 0.

The multidimensional statement (iii) follows from the classical one-dimensional
cases (i) and (ii). For this and more on Bernstein polynomials see e.g. [Lor86].

Bernstein’s Theorem 3.5 only holds for 𝑓 > 0. Allowing zeros at the interval end
points is possible and gives the following “if and only if”-statement.

Corollary 3.6. Let 𝑓 ∈ R[𝑥] \ {0}. The following are equivalent:

(i) 𝑓 > 0 on (0, 1).

(ii) 𝑓 (𝑥) =
𝐷∑︁
𝑖=0

𝑐𝑘,𝑙 · 𝑥𝑙 · (1 − 𝑥)𝑘 for some 𝐷 ∈ N, 𝑐𝑘,𝑙 ≥ 0 for all 𝑘, 𝑙 = 0, . . . , 𝐷,

and 𝑐𝑘′ ,𝑙′ > 0 at least once.

Proof. See Problem 3.5. ⊓⊔

On [−1, 1] a strengthened version of Bernstein’s Theorem 3.5 (ii) is attributed to
F. Lukács [Luk18] (Lukács Theorem). Note that Lukács in [Luk18] reproves several
results/formulas which already appeared in a work by M. R. Radau [Rad80], as
pointed out by L. Brickman [Bri59, p. 196]. Additionally, in [KN77, p. 61, footnote
4] M. G. Krein and A. A. Nudel’man state that A. A. Markov proved a more precise
version of Lukács Theorem already in 1906 [Mar06],1 see also [Mar95]. Krein and
Nudel’man call it Markov’s Theorem. It is the following.

Lukács–Markov Theorem 3.7 ([Mar06] or e.g. [Luk18], [KN77, p. 61, Thm. 2.2]).
Let −∞ < 𝑎 < 𝑏 < ∞ and let 𝑝 ∈ R[𝑥] be with deg 𝑝 = 𝑛 and 𝑝 ≥ 0 on [𝑎, 𝑏]. The
following hold:

(i) If deg 𝑝 = 2𝑚 for some 𝑚 ∈ N0 then 𝑝 is of the form

𝑝(𝑥) = 𝑓 (𝑥)2 + (𝑥 − 𝑎) (𝑏 − 𝑥) · 𝑔(𝑥)2

for some 𝑓 , 𝑔 ∈ R[𝑥] with deg 𝑓 = 𝑚 and deg 𝑔 = 𝑚 − 1.
(ii) If deg 𝑝 = 2𝑚 + 1 for some 𝑚 ∈ N0 then 𝑝 is of the form

𝑝(𝑥) = (𝑥 − 𝑎) · 𝑓 (𝑥)2 + (𝑏 − 𝑥) · 𝑔(𝑥)2

for some 𝑓 , 𝑔 ∈ R[𝑥] with deg 𝑓 = deg 𝑔 = 𝑚.

For case (i) note that the relation

(𝑥 − 𝑎) (𝑏 − 𝑥) = 1
𝑏 − 𝑎

[
(𝑥 − 𝑎)2 (𝑏 − 𝑥) + (𝑥 − 𝑎) (𝑏 − 𝑥)2] (3.8)

implies

1 We do not have access to [Mar06] and can therefore neither confirm nor decline this statement.
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Pos( [𝑎, 𝑏]) =
{
𝑓 (𝑥)2 + (𝑥 − 𝑎) · 𝑔(𝑥)2 + (𝑏 − 𝑥) · ℎ(𝑥)2 �� 𝑓 , 𝑔, ℎ ∈ R[𝑥]

}
. (3.9)

The special part about the Lukács–Markov Theorem 3.7 are the degree bounds on
the polynomials 𝑓 and 𝑔. Equation (3.8) destroyes these degree bounds since we
have to go one degree higher.

In the Lukács–Markov Theorem 9.5 we will see how from Karlin’s Positivstel-
lensatz 7.3 an even stronger version follows which describes the polynomials 𝑓 and
𝑔 more precisely and up to a certain point uniquely. In [KN77, p. 61 Thm. 2.2 and p.
373 Thm. 6.4] the Lukács–Markov Theorem 3.7 is called Markov–Lukács Theorem
since Markov gave the more precise version much earlier than Lukács. In [Hav36]
Haviland uses this result without any reference or attribution to either Lukács or
Markov.

For the two-dimensional Hausdorff moment problem Haviland uses with a ref-
erence to [HS33] that any polynomial 𝑓 ∈ R[𝑥, 𝑦] which is strictly positive on
[0, 1]2 is a linear combination of 𝑥𝑚 · 𝑦𝑛 · (1 − 𝑥) 𝑝 · (1 − 𝑦)𝑞 , 𝑛, 𝑚, 𝑞, 𝑝 ∈ N0, with
non-negative coefficients. This is actually Bernstein’s Theorem 3.5 (iii).

T. H. Hildebrandt and I. J. Schoenberg [HS33] already solved the moment problem
on [0, 1]𝑛 for all 𝑛 ∈ N getting the same result as Haviland. The idea of using
Pos(𝐾)-descriptions to solve the moment problem was therefore already used by
Hildebrandt and Schoenberg in 1933 [HS33] before Haviland uses this in [Hav35]
and generalized this in [Hav36] as suggested to him by Wintner.

With these broader historical remarks we see that of course more people are
connected to Theorem 3.4. It might also be appropriate to call Theorem 3.4 the
Haviland–Wintner or Haviland–Hildebrandt–Schoenberg–Wintner Theorem. But as
so often, the list of contributors is long (and maybe even longer) and hence the main
contribution (the general proof) is rewarded by calling it just Haviland’s Theorem.

The last classical moment problem which we want to mention on the long list was
solved by K. I. Švenco [Šve39].

Švenco’s Theorem 3.8. Let 𝑠 = (𝑠𝑖)𝑖∈N0 be a real sequence. The following are
equivalent:

(i) 𝑠 is a (−∞, 0] ∪ [1,∞)-moment sequence.
(ii) 𝐿𝑠 (𝑝) ≥ 0 for all 𝑝 ∈ Pos((−∞, 0] ∪ [1,∞)).

(iii) 𝐿𝑠 (𝑝2) ≥ 0, 𝐿 (𝑋2−𝑋)𝑠 (𝑝2) ≥ 0 for all 𝑝 ∈ R[𝑥].
(iv) 𝑠 and (𝑋2 − 𝑋)𝑠 are positive semi-definite.
(v) H(𝑠) ⪰ 0 and H((𝑋2 − 𝑋)𝑠) ⪰ 0.

The general case of Švenco’s Theorem 3.8 on

R \
𝑛⋃
𝑖=1

(𝑎𝑖 , 𝑏𝑖) (3.10)

for any 𝑛 ∈ N and 𝑎1 < 𝑏1 < · · · < 𝑎𝑛 < 𝑏𝑛 was proved by V. A. Fil’štinskiı̌
[Fil64]. All non-negative polynomials on (3.10) can be explicitly written down.
More precisely, all moment problems on closed and semi-algebraic sets 𝐾 ⊆ R

follow nowadays easily from Haviland’s Theorem 3.4 resp. the Basic Representation
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Theorem 2.9 and some well established results from real algebraic geometry, see
e.g. [Mar08, Prop. 2.7.3].

Haviland’s Theorem 3.4 was important to give the solutions of the classical
moment problem, i.e., mostly one-dimensional cases. After that is was no longer
used and only became important again when descriptions of strictly positive and
non-negative polynomials on 𝐾 ⊆ R𝑛 with 𝑛 ≥ 2 be came available. This process
was started with [Sch91] and real algebraic geometry was revived by it.

3.2 Early Results with Gaps

The early history of moment problems with gaps is very thin. We discuss only
[Hau21b] and [Boa39a].

Hausdorff just solved Hausdorff’s Theorem 3.3 in [Hau21a]2 and in [Hau21b]3
he treats

𝑠𝑛 =

∫ 1

0
𝑥𝑘𝑛 d𝜇(𝑥)

for all 𝑛 ∈ N0 with
𝑘0 = 0 < 𝑘1 < 𝑘2 < · · · < 𝑘𝑛 < . . .

for a sequence of real numbers 𝑘𝑖 , i.e., not necessarily inN0. See also [ST43, p. 104].
Since Hausdorff in [Hau21b] did not have access to Haviland’s Theorem 3.4 [Hav36]
or the description of all non-negative linear combinations of 1, 𝑥𝑘1 , . . . , 𝑥𝑘𝑛 , . . . the
results in [Hau21b] need complicated formulations and are not very strong. Only
with the description of non-negative linear combinations by Karlin [Kar63] an easy
formulation of the result is possible. We will therefore postpone the exact formulation
to Theorem 9.6 and Theorem 9.8 where we present easy proofs using also the theory
of adapted spaces from Chapter 2, especially the Basic Representation Theorem 2.9.

In [Boa39a] Boas investigates the Stieltjes moment problem (𝐾 = [0,∞)) with
gaps. Similar to [Hau21b] the results are difficult to read and they are unfortunately
incomplete since Boas (like Hausdorff) did not have access to the description of all
non-negative or strictly positive polynomials with gaps (or more general exponents).
We will give the complete solution of the [0,∞)-moment problem with gaps and
more general exponents in Theorem 10.4.

3.3 Finitely Atomic Representing Measures: Richter’s Theorem

When working with a truncated moment sequence resp. functionals it is often useful
in theory and applications to find a representing measure with finitely many atoms.

2 Submitted: February 11, 1920.
3 Submitted: September 8, 1920.
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That this is always possible for truncated moment functionals was first proved in full
generality by H. Richter [Ric57, Satz 4].

Its proof proceeds by induction via the dimension of the moment cone. To do
that we need to look at the boundary of the moment cone. We need that when part
of the boundary of the moment cone is cut out by a supporting hyperplane then this
intersection is again a moment cone of strictly smaller dimension. That is the content
of the following lemma.

Lemma 3.9. Let 𝑛 ∈ N, (X,𝔄) be a measurable space, F = { 𝑓𝑖}𝑛𝑖=1 be a family of
measurable functions 𝑓𝑖 : X → R, SF be the moment cone spanned by F , and let
𝐻 be a supporting hyperplane of SF . Then SF ∩ 𝐻 is a moment cone of dimension
𝑚 = dim(SF ∩ 𝐻) < 𝑛 spanned by a family G ⊂ lin F on a measurable space
(Y,𝔄 |Y) with Y ⊆ X.

Proof. See Problem 3.6. ⊓⊔

With the previous lemma we can now prove Richter’s Theorem.

Richter’s Theorem 3.10 ([Ric57, Satz 4]; or see e.g. [Kem68, Thm. 1], [FP01, p.
198, Thm. 1]). Let 𝑛 ∈ N, let (X,𝔄) be a measurable space, and let { 𝑓𝑖}𝑛𝑖=1 be
a family of real linearly independent measurable functions 𝑓𝑖 : X → R. Then for
every measure 𝜇 on X such that all 𝑓𝑖 are 𝜇-integrable, i.e.,

𝑠𝑖 :=
∫
X
𝑓𝑖 (𝑥) d𝜇(𝑥) ∈ R

for all 𝑖 = 1, . . . , 𝑛, there exist a 𝑘 ∈ N0 with 𝑘 ≤ 𝑛, points 𝑥1, . . . , 𝑥𝑘 ∈ X pairwise
different, and 𝑐1, . . . , 𝑐𝑘 ∈ (0,∞) such that

𝑠𝑖 =

𝑘∑︁
𝑗=1
𝑐 𝑗 · 𝑓𝑖 (𝑥 𝑗 ) =

∫
X
𝑓𝑖 (𝑥) d𝜈(𝑥) with 𝜈 =

𝑘∑︁
𝑗=1
𝑐 𝑗 · 𝛿𝑥 𝑗

holds for all 𝑖 = 1, . . . , 𝑛.

Proof. We show that every truncated moment sequence 𝑠 = (𝑠1, . . . , 𝑠𝑛) has a finitely
atomic representing measure with at most 𝑛 atoms in X. We prove this statement by
induction on 𝑛.
𝑛 = 1: We have

𝑠1 =

∫
X
𝑓1 (𝑥) d𝜇(𝑥).

If 𝑠1 = 0 then take 𝜈 = 0 which proves the statement. Let us assume 𝑠1 ≠ 0. Since
𝜇 ≥ 0 on X there exists a point 𝑥1 ∈ X such that sgn 𝑓1 (𝑥1) = sgn 𝑠1. Hence, we
have 𝑠1

𝑓1 (𝑥1 ) =: 𝑐1 > 0 and

𝑠1 =
𝑠1

𝑓1 (𝑥1)
· 𝑓1 (𝑥1) =

∫
X
𝑓1 (𝑥) d(𝑐1 · 𝛿𝑥1 ) (𝑥)

which proves the statement.
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𝑛 ≥ 2: Let SF ⊆ R𝑛 be the moment cone generated from F . We make the
distinction of the two cases

(a) 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ intSF and
(b) 𝑠 ∈ 𝜕SF ∩ SF .

For (a) letS := cone {( 𝑓1 (𝑥), . . . , 𝑓𝑛 (𝑥))𝑇 | 𝑥 ∈ X} be the cone generated by all point
evaluations ( 𝑓1 (𝑥), . . . , 𝑓𝑛 (𝑥))𝑇 . By Carathéodory’s Theorem 0.4 every 𝑠 ∈ S is a
moment sequences with a 𝑘-atomic representing measure with 𝑘 ≤ 𝑛. Additionally,
we have that intS is non-empty since S is full dimensional.

Assume intS ≠ intSF then int (SF \ S) ≠ ∅. Let 𝑠 ∈ int (SF \ S) with a
representing measure 𝜇. Then there exists a separating linear functional 𝑙, i.e.,
𝑙 (𝑠) < 0 and 𝑙 (𝑡) > 0 for all 𝑡 ∈ S. Since ( 𝑓1 (𝑥), . . . , 𝑓𝑛 (𝑥))𝑇 ∈ S we have that
𝑓 (𝑥) := 𝑙 (( 𝑓1 (𝑥), . . . , 𝑓𝑛 (𝑥)) > 0 for all 𝑥 ∈ X but∫

X
𝑓 (𝑥) d𝜇(𝑥) = 𝑙 (𝑠) < 0

with is a contradiction to 𝜇 ≥ 0. Hence, intS = intSF and every 𝑠 ∈ intSF has a
𝑘-atomic representing measure with 𝑘 ≤ 𝑛.

For (b) assume 𝑠 ∈ 𝜕SF∩SF . Since SF is a convex cone there exists a supporting
hyperplane 𝐻 of SF at 𝑠. But then SF ∩ 𝐻 is by Lemma 3.9 a moment cone of
dimension at most 𝑛 − 1 and here the theorem holds by induction. ⊓⊔

The previous proof is the original proof by Richter and only the mathematical
language is updated. The following historical overview about Richter’s Theorem 3.10
first appeared in [dDS22].

Replacing integration by finitely many point evaluations was already used and
investigated by C. F. Gauß [Gau15]. The 𝑘-atomic representing measures from
Richter’s Theorem 3.10 are therefore also called (Gaussian) cubature formulas.

The history of Richter’s Theorem 3.10 is confusing and the literature is often
misleading. We therefore list in chronological order previous versions or versions
which appeared almost at the same time. The conditions of these versions (including
Richter) are the following:

(A) A. Wald 19394 [Wal39, Prop. 13]: X = R and 𝑓𝑖 (𝑥) = |𝑥−𝑥0 |𝑑𝑖 with 𝑑𝑖 ∈ N0,
0 ≤ 𝑑1 < 𝑑2 < · · · < 𝑑𝑛, and 𝑥0 ∈ X.

(B) P. C. Rosenbloom 1952 [Ros52, Cor. 38e]: (X,𝔄) a measurable space and 𝑓𝑖
bounded measurable functions.

(C) H. Richter 19575 [Ric57, Satz 4]: (X,𝔄) a measurable space and 𝑓𝑖 measurable
functions.

(D) M. V. Tchakaloff 19576 [Tch57, Thm. II]: X ⊂ R𝑛 compact and 𝑓𝑖 monomials
of degree at most 𝑑.

4 Received: February 25, 1939. Published: September 1939.
5 Received: December 27, 1956. Published: April, 1957.
6 Published: July-September, 1957
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(E) W. W. Rogosinski 19587 [Rog58, Thm. 1]: (X,𝔄) measurable space and 𝑓𝑖
measurable functions.

From this list we see that Tchakaloff’s result (D) from 1957 is a special case of
Rosenbloom’s result (E) from 1952 and that the general case was proved by Richter
and Rogosinski almost about at the same time, see the exact dates in the footnotes.
If one reads Richter’s paper, one might think at first glance that he treats only
the one-dimensional case, but a closer look reveals that his Proposition (Satz) 4
covers actually the general case of measurable functions. Rogosinski treats the one-
dimensional case, but states at the end of the introduction of [Rog58]:

Lastly, the restrictions in this paper to moment problems of dimension one is hardly essential.
Much of our geometrical arguments carries through, with obvious modifications, to any finite
number of dimensions, and even to certain more general measure spaces.

The above proof of Richter’s Theorem 3.10, and likewise the one in [Sch17, Theorem
1.24], are nothing but modern formulations of the proofs of Richter and Rogosinski
without additional arguments. Note that Rogosinki’s paper [Rog58] was submitted
about a half year after the appearance of Richter’s [Ric57].

It might be of interest that the general results of Richter and Rogosinski from
1957/58 can be derived from Rosenbloom’s Theorem from 1952, see Problem 3.7.
With that wider historical perspective in mind it might be justified to call Richter’s
Theorem 3.10 also the Richter–Rogosinski–Rosenbloom Theorem.

Richter’s Theorem 3.10 was overlooked in the modern literature on truncated
polynomial moment problems. The problem probably arose around 1997/98 when it
was stated as an open problem in a published paper.8 The paper [Ric57] and numerous
works of J. H. B. Kemperman were not included back then. Especially [Kem68, Thm.
1] where Kemperman fully states the general theorem (Richter’s Theorem 3.10) and
attributed it therein to Richter and Rogosinski is missing. Later on, this missing
piece was not added in several other works. The error continued in the literature for
several years and Richter’s Theorem 3.10 was reproved in several papers in weaker
forms. Even nowadays papers appear not aware of Richter’s Theorem 3.10 or of the
content of [Ric57].

3.4 Signed Representing Measures: Boas’ Theorem

In the theory of moments almost exclusively the representation by non-negative
measures is treated. The reason is the following result due to R. P. Boas [Boa39b].

Boas’ Theorem 3.11 ([Boa39b] or e.g. [ST43, p. 103, Thm. 3.11]). Let 𝑠 = (𝑠𝑖)𝑖∈N0

be a real sequence. Then there exist infinitely many signed measures 𝜇 on R and
infinitely many signed measures 𝜈 on [0,∞) such that

7 Received: August 22, 1957. Published: May 6, 1958.
8 We do not give the references for this and subsequent papers who reproved Richter’s Theorem 3.10.
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𝑠𝑖 =

∫
R

𝑥𝑖 d𝜇(𝑥) =
∫ ∞

0
𝑥𝑖 d𝜈(𝑥)

holds for all 𝑖 ∈ N0.

The proof follows the arguments in [ST43, pp. 103–104].

Proof. We prove the case on [0,∞). The case on R is then only a special case.
By induction we write 𝑠 = 𝑣 − 𝑤 such that 𝑣 and 𝑤 are positive definite sequences

where we can apply the Basic Representation Theorem 2.9.
𝑖 = 0: We can chose 𝑣0, 𝑤0 ≫ 1 with 𝑠0 = 𝑣0 − 𝑤0, i.e., 𝐿𝑣 (𝑝), 𝐿𝑤(𝑝) ≥ 0 for all

𝑝 ∈ Pos( [0,∞))≤0 = [0,∞).
𝑖 → 𝑖+1: Assume we found (𝑣 𝑗 )𝑖𝑗=0 and (𝑤 𝑗 )𝑖𝑗=0 such that 𝐿𝑣 (𝑝), 𝐿𝑤(𝑝) ≥ 0 for all

𝑝 ∈ Pos( [0,∞))≤𝑖 . Since for 𝑖+1 the term 𝑥𝑖+1 appears additionally to 1, 𝑥, 𝑥2, . . . , 𝑥𝑖 ,
the convex cone Pos( [0,∞))≤𝑖+1 has compact base, and 𝐿 is continuous onR[𝑥]≤𝑖+1
we find 𝑣𝑖+1, 𝑤𝑖+1 ≫ 1 with 𝑠𝑖+1 = 𝑣𝑖+1 − 𝑤𝑖+1 such that 𝐿𝑣 (𝑝), 𝐿𝑤(𝑝) ≥ 0 for all
𝑝 ∈ Pos( [0,∞))≤𝑖+1.

Hence, we found sequences 𝑣, 𝑤 with 𝑠 = 𝑣 − 𝑤 and 𝐿𝑣 (𝑝), 𝐿𝑤(𝑝) ≥ 0 for all
𝑝 ∈ Pos( [0,∞)). By the Basic Representation Theorem 2.9 𝐿𝑣 is represented by
some non-negative 𝜇+ and 𝐿𝑤 is represented by some non-negative 𝜇− both with
support in [0,∞), i.e., 𝐿𝑠 is represented by 𝜇 = 𝜇+ − 𝜇− supported on [0,∞). ⊓⊔

T. Sherman showed that Boas’ Theorem 3.11 (even when 𝐿 is a complex linear
functional) also holds in the 𝑛-dimensional case on R𝑛 and [0,∞)𝑛 for any 𝑛 ∈ N
[She64, Thm. 1]. Similar results are proved for linear functionals on the universal
enveloping algebra E(𝐺) of a Lie group 𝐺 by K. Schmüdgen [Sch78]. If the Lie
group 𝐺 is R𝑛 then this again gives Sherman’s result. G. Pólya [Pól38] (see also
[ST43, p. 104]) showed an extension that special kinds of measures can be chosen.
Essentially, it already appeared in [Bor95], as pointed out by Pólya himself [Pól38],
see [ST43, p. 104].

Pólya’s Signed Representation Theorem 3.12 (see [Bor95] or [Pól38]). Let
(𝑥𝑖)𝑖∈N0 ⊆ R be such that

(a) 𝑥𝑖 < 𝑥𝑖+1 and 𝑥𝑖
𝑖→∞−−−−→ ∞

or

(b) 𝑥𝑖 > 𝑥𝑖+1 and 𝑥𝑖
𝑖→∞−−−−→ −∞.

Then for every sequence (𝑠𝑖)𝑖∈N0 ⊆ R there exists a sequence (𝑐𝑖)𝑖∈N0 ⊆ R such
that

𝑠𝑖 =

∫
R

𝑥𝑖 · 𝑓𝑐 (𝑥) d𝑥

holds for all 𝑖 ∈ N0 with

𝑓𝑐 =
∑︁
𝑖∈N0

𝑐𝑖 · 𝜒[𝑥𝑖 ,𝑥𝑖+1 ) resp. 𝑓𝑐 =
∑︁
𝑖∈N0

𝑐𝑖 · 𝜒(𝑥𝑖+1 ,𝑥𝑖 ]
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where 𝜒𝐴 is the characteristic function of a set 𝐴, i.e., every sequence has a rep-
resenting measure absolutely continuous with respect to the Lebesgue measure and
the density function is a step function 𝑓𝑐 where the positions 𝑥𝑖 of the steps can be
chosen as any strictly increasing or strictly decreasing divergent sequence.

From the theory of distributions, see e.g. [Gru09], we have that the derivative of
𝜒[𝑎,𝑏) in the distributional sense is a signed measure, i.e.,∫

𝑓 (𝑥) · 𝜒′[𝑎,𝑏) d𝑥 = −
∫ 𝑏

𝑎

𝑓 ′ (𝑥) d𝑥 = 𝑓 (𝑎) − 𝑓 (𝑏) =
∫

𝑓 (𝑥) d(𝛿𝑎 − 𝛿𝑏) (𝑥)
(3.11)

for all 𝑓 ∈ C1 (R,R). Eq. (3.11) can be shortly written down by abusing notation as
“𝜒[𝑎,𝑏) = 𝛿𝑎 − 𝛿𝑏”. From (3.11) and Pólya’s Signed Representation Theorem 3.12
we get the following immediate consequence.

Signed Atomic Representation Theorem 3.13 (see [Blo53, Thm. 3.1]). Let
(𝑥𝑖)𝑖∈N0 ⊆ R be such that

(a) 𝑥𝑖 < 𝑥𝑖+1 and 𝑥𝑖
𝑖→∞−−−−→ ∞

or

(b) 𝑥𝑖 > 𝑥𝑖+1 and 𝑥𝑖
𝑖→∞−−−−→ −∞.

Then for any sequence (𝑠𝑖)𝑖∈N0 ⊆ R there exists a sequence (𝑐𝑖)𝑖∈N0 ⊆ R such that

𝑠𝑖 =

∫
R

𝑥𝑖 d𝜇𝑐 (𝑥)

holds for all 𝑖 ∈ N0 with
𝜇𝑐 =

∑︁
𝑖∈N0

𝑐𝑖 · 𝛿𝑥𝑖 .

Proof. Let 𝑓𝑑 be the step function representing measure of the sequence (𝑡𝑖)𝑖∈N0

from Pólya’s Signed Representation Theorem 3.12 with 𝑡𝑖 := − 1
𝑖+1 𝑠𝑖 for all 𝑖 ∈ N0.

Then

𝑠𝑖 = −(𝑖 + 1) · 𝑡𝑖

= −(𝑖 + 1) ·
∫

𝑥𝑖 · 𝑓𝑑 (𝑥) d𝑥

= −
∫

(𝑥𝑖+1)′ · 𝑓𝑑 (𝑥) d𝑥

=

∫
𝑥𝑖+1 · 𝑓𝑑 (𝑥)′ d𝑥

=

∫
𝑥𝑖+1 d𝜇𝑐̃ (𝑥)

=

∫
𝑥𝑖 d𝜇𝑐 (𝑥)
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holds for all 𝑖 ∈ N0 with some 𝑐 = (𝑐)𝑖∈N0 ⊆ R and 𝑐 = (𝑐𝑖)𝑖∈N0 ⊆ R. The last
equality (going from 𝑐 to 𝑐) holds since∫

𝑓 (𝑥) · 𝑥 d𝛿𝑦 (𝑥) = 𝑓 (𝑦) · 𝑦 =
∫

𝑓 (𝑥) d(𝑦 · 𝛿𝑦) (𝑥),

i.e., 𝑐𝑖 = 𝑥𝑖 · 𝑐𝑖 for all 𝑖 ∈ N0. ⊓⊔

We get Pólya’s Signed Representation Theorem 3.12 from the Signed Atomic
Representation Theorem 3.13 by reversing the previous proof.

Corollary 3.14. Let (𝑠𝑖)𝑖∈N0 and let 𝑈 ⊆ R be unbounded. Then there exists a
signed measure 𝜇 on R with supp 𝜇 = 𝑈 such that

𝑠𝑖 =

∫
𝑥𝑖 d𝜇(𝑥)

holds for all 𝑖 ∈ N0.

On R𝑛 it is even possible to find a Schwartz function 𝑓 ∈ S(R𝑛) such that

𝑠𝛼 =

∫
R𝑛

𝑥𝛼 · 𝑓 (𝑥) d𝑥

for all 𝛼 ∈ N𝑛0 . Use e.g. [CdD22].
Boas’ Theorem 3.11, Pólya’s Signed Representation Theorem 3.12, and Signed

Atomic Representation Theorem 3.13 also cover the cases with gaps. If any gaps in
the real sequence 𝑠 are present then fill them with any real number you like.

Note, neither Boas’ Theorem 3.11, Pólya’s Signed Representation Theorem 3.12,
nor Signed Atomic Representation Theorem 3.13 hold with the restriction that the
representing signed measure shall have a bounded and therefore compact support.
That is seen from the following result due to Hausdorff [Hau23, p. 232, II.].

Signed Hausdorff’s Theorem 3.15 (see [Hau23, p. 232, II.] or e.g. [Lor86, Thm.
3.3.1]). Let (𝑠𝑖)𝑖∈N0 ⊆ R be a real sequence. The following are equivalent:

(i) There exist positive (C([0, 1],R)-regular) measures 𝜇1 and 𝜇2, i.e., a signed
(C([0, 1],R)-regular) measure 𝜇 = 𝜇1 − 𝜇2, such that

𝑠𝑖 =

∫ 1

0
𝑥𝑖 d𝜇1 (𝑥) −

∫ 1

0
𝑥𝑖 d𝜇2 (𝑥) =

∫ 1

0
𝑥𝑖 d𝜇(𝑥)

holds for all 𝑖 ∈ N0.
(ii) There exists a 𝐶 > 0 such that

𝑑∑︁
𝑘=0

(
𝑑

𝑘

)
·
��𝐿𝑠 (𝑥𝑘 · (1 − 𝑥)𝑑−𝑘)

�� < 𝐶
holds for all 𝑑 ∈ N0.
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The following proof is due to T. H. Hildebrandt [Hil32], see also [Lor86, pp.
58–59]. We employ the Signed Riesz’ Representation Theorem 0.18 together with
the Bernstein polynomials 𝐵 𝑓 ,𝑑 in (3.7) and Bernstein’s Theorem 3.5.

Proof. (i) ⇒ (ii): Since 𝑠 is represented by 𝜇 = 𝜇1 − 𝜇2 and since by Bernstein’s
Theorem 3.5 (i) we have ∥1 − 𝐵1,𝑑 ∥∞ → 0 as 𝑑 → ∞ we have

𝑑∑︁
𝑘=0

(
𝑑

𝑘

)
·
��𝐿𝑠 (𝑥𝑘 · (1 − 𝑥)𝑑−𝑘)

�� ≤ 𝑑∑︁
𝑘=0

(∫ 1

0
𝐵1,𝑑 (𝑥) d𝜇1 (𝑥) +

∫ 1

0
𝐵1,𝑑 (𝑥) d𝜇2 (𝑥)

)
𝑑→∞−−−−→ 𝜇1 ( [0, 1]) + 𝜇2 ( [0, 1]) < ∞

which proves (ii).
(ii) ⇒ (i): Let 𝑓 ∈ C([0, 1],R). Then

|𝐿𝑠 (𝐵 𝑓 ,𝑑) | =
����� 𝑑∑︁
𝑘=0

𝑓

(
𝑘

𝑛

)
·
(
𝑑

𝑘

)
· 𝐿𝑠 (𝑥𝑘 · (1 − 𝑥)𝑑−𝑘)

�����
≤ ∥ 𝑓 ∥∞ ·

𝑑∑︁
𝑘=0

(
𝑑

𝑘

)
·
��𝐿𝑠 (𝑥𝑘 · (1 − 𝑥)𝑑−𝑘)

��
≤ 𝐶 · ∥ 𝑓 ∥∞

which proves that 𝐿𝑠 can be continuously extended from R[𝑥] to C([0, 1],R) and
the extension fulfills (0.6). To see this let 𝑓𝑑 ∈ R[𝑥] with ∥ 𝑓 − 𝑓𝑑 ∥∞ → 0 as 𝑑 → ∞.
Then |𝐿𝑠 ( 𝑓𝑑 − 𝑓𝑑′ ) | ≤ 𝑐 · ∥ 𝑓𝑑 − 𝑓𝑑′ ∥∞ → 0 as 𝑑, 𝑑′ → ∞. Therefore, (𝐿𝑠 ( 𝑓𝑑))𝑑∈N0

is a Cauchy sequence with a unique limit: 𝐿𝑠 ( 𝑓 ) := lim𝑑→∞ 𝐿𝑠 ( 𝑓𝑑). Then (0.6)
holds since C𝑐 ( [0, 1],R) = C([0, 1],R) and |𝐿𝑠 ( 𝑓 ) | ≤ 𝐶 · ∥ 𝑓 ∥∞.

Hence, by the Signed Riesz’ Representation Theorem 0.18 we have (i). ⊓⊔

With Bernstein’s Theorem 3.5 (iii) the previous result also holds on [0, 1]𝑛 for
any 𝑛 ∈ N0.

More on signed or complex representing measures can be found e.g. in [Blo53,
Hor77, BCJ79, Kow84, Dur89, Hoi92] and references therein.

3.5 Solving all Truncated Moment Problems solves the Moment
Problem

The following result was already indicated by Hamburger in [Ham20] and formalized
by J. Stochel in [Sto01]. We have the following.

Theorem 3.16. Let 𝑛 ∈ N, 𝐾 ⊆ R𝑛 be closed, V ⊆ R[𝑥1, . . . , 𝑥𝑛] be an adapted
space on 𝐾 , and let 𝐿 : V → R be a linear functional on V. The following are
equivalent:



3.5 Solving all Truncated Moment Problems solves the Moment Problem 43

(i) 𝐿 : V → R is a 𝐾-moment functional.
(ii) 𝐿𝑘 := 𝐿 |V∩R[𝑥1 ,...,𝑥𝑛 ]≤𝑘 are truncated 𝐾-moment functionals for all 𝑘 ∈ N0.

Proof. While “(i) ⇒ (ii)” is clear it is sufficient to prove the reverse direction.
Let 𝐿𝑘 be a truncated 𝐾-moment functionals for all 𝑘 ∈ N0. Since V ⊆

R[𝑥1, . . . , 𝑥𝑛] for any 𝑝 ∈ V we have that 𝐿 : V → R is well-defined by
𝐿 (𝑝) := 𝐿deg 𝑝 (𝑝). Let 𝑝 ∈ V with 𝑝 ≥ 0 on 𝐾 then 𝐿 (𝑝) = 𝐿deg 𝑝 (𝑝) ≥ 0,
i.e., by the Basic Representation Theorem 2.9 we have that 𝐿 is a 𝐾-moment func-
tional. ⊓⊔

Note, V can also be finite dimensional when 𝐾 is compact. Then the result is
trivial. For unbounded 𝐾 the adapted space V is always infinite dimensional.

A more general version of Theorem 3.16 can e.g. be found in [Sch17, Thm. 1.20].

Problems

3.1 Prove Stieltjes’ Theorem 3.1 with the Basic Representation Theorem 2.9 and
the representation (3.4).

3.2 Prove Hamburger’s Theorem 3.2 with the Basic Representation Theorem 2.9
and the representation (3.2).

3.3 Prove Hausdorff’s Theorem 3.3 with the Basic Representation Theorem 2.9 and
the Lukács–Markov Theorem 3.7, resp. the representation of Pos( [𝑎, 𝑏]) in (3.9).

3.4 Prove Haviland’s Theorem 3.4 with the Basic Representation Theorem 2.9.

3.5 Use Bernstein’s Theorem 3.5 (ii) to prove Corollary 3.6.

3.6 Prove Lemma 3.9.

3.7 Show that Richter’s Theorem 3.10 follows from Rosenbloom’s Theorem, i.e.,
show that the additional assumption that all 𝑓𝑖 are bounded on the measurable space
(X,𝔄) can be removed.
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Chapter 4
T-Systems

There is nothing more practical than a good theory.

Kurt Lewin [Lew43]

In this chapter we introduce the Tchebycheff systems or short T-systems. We give
basic examples and properties.

4.1 The Early History of T-Systems

In our presentation we mostly limit ourselves to the works [Kre51, Kar63, KS66,
KN77]. However, the concept of T-system was introduces much earlier. It goes back
to its name giver: P. L. Tchebycheff [Tch74]. See especially [Kre51] for a good
overview of the history of the development of T-systems and also [Gon00].

In [Tch74] Tchebycheff states the following open problem:

Let
𝑎 < 𝜉 < 𝜂 < 𝑏

be real numbers and let the numbers

𝑠𝑘 =

∫ 𝑏

𝑎

𝑥𝑘 𝑓 (𝑥 ) d𝑥 (4.1)

for 𝑘 = 0, 1, . . . , 𝑛 − 1 for some 𝑛 ∈ N0 be given. Find the bounds on the integral∫ 𝜂

𝜉

𝑓 (𝑥 ) d𝑥 (4.2)

under the conditions that 𝑓 ≥ 0 on [𝑎, 𝑏] and (4.1) holds.

From this investigation Tchebycheff arrives at the method of continued fractions,
which was used in the early results in the moment problems, see Section 3.1. Tcheby-
cheff gives without proof the inequalities (upper and lower bounds) of (4.2). The
proof was independently found by others, see [Kre51, pp. 3–4]. The key here is to
work over a finitely dimensional space spanned by 𝑓0, . . . , 𝑓𝑛.

A well-known and guiding example are the functions 1, 𝑥, . . . , 𝑥𝑛.

47
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Example 4.1. Let 𝑛 ∈ N and X ⊆ R with |X| ≥ 𝑛 + 1. Then the family F =

{𝑥𝑖}𝑛
𝑖=0 is a T-system, see Definition 4.2 below. This follows immediately from the

Vandermonde determinant

det
(
𝑥
𝑗

𝑖

)𝑛
𝑖, 𝑗=0 =

∏
0≤𝑖< 𝑗≤𝑛

(𝑥 𝑗 − 𝑥𝑖)

for any 𝑥0, . . . , 𝑥𝑛 ∈ X. ◦

Krein states that he developed “the connection between ideas of Markov and
functional-geometric ideas” which made it possible to remove the Wronskian ap-
proach (Definition 5.6) and replacing it with continuity and the condition

The curve Γ of the (𝑛 + 1)-dimensional spaceR𝑛+1:

𝑦0 = 𝑓0 (𝑥 ) , 𝑦1 = 𝑓1 (𝑥 ) , . . . , 𝑦𝑛 = 𝑓𝑛 (𝑥 )

does not intersect itself and no hyperplane through the origin intersects it in more than 𝑛
points.

which is equivalent to

No linear combination
𝑛∑︁
𝑖=0
𝑎𝑖 𝑓𝑖 with

𝑛∑︁
𝑖=0
𝑎2
𝑖 > 0

vanishes more than 𝑛 times in the closed interval [𝑎, 𝑏].

see [Kre51, pp. 19–20]. The later is then generalized to leave out continuity and
replacing [𝑎, 𝑏] with any set X, see Definition 4.2. For a family { 𝑓𝑖}𝑛𝑖=0 with this
property S. N. Bernstein [Ber37] introduced the name Tchebycheff system and Krein
[Kre51, p. 20] and Archieser [Ach56, p. 73, §47] continued using this terminology.

For more on the history see e.g. [Kre51]. We especially recommend the very
nice survey article [Gon00] with the references therein for more on the works, the
contributions, and the impact of Tchebycheff’s work.

4.2 Definition and Basic Properties

Definition 4.2. Let 𝑛 ∈ N0, X be a set with |X| ≥ 𝑛+1, and F = { 𝑓𝑖}𝑛𝑖=0 be a family
of real functions 𝑓𝑖 : X → R. We call a linear combination

𝑓 =

𝑛∑︁
𝑖=0

𝑎𝑖 · 𝑓𝑖 ∈ lin F := {𝑎0 𝑓0 + · · · + 𝑎𝑛 𝑓𝑛 | 𝑎0, . . . , 𝑎𝑛 ∈ R} (4.3)

a polynomial. The family F on X is called a Tchebycheff system (or short T-system)
of order 𝑛 on X if every polynomial 𝑓 ∈ lin F with

∑𝑛
𝑖=0 𝑎

2
𝑖
> 0 has at most 𝑛 zeros

in X.
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If additionally X is a topological space and F is a family of continuous functions
we call F a continuous T-system. If additionally X is the unit circle T then we call
F a periodic T-system.

The following immediate consequence shows that we can restrict the domain X
of the T-system F to some Y ⊆ X and as long as |Y| ≥ 𝑛+1 the restricted T-system
remains a T-system. In applications and examples we therefore only need to prove
the T-system property on some larger set X.

Corollary 4.3. Let 𝑛 ∈ N0 and let F = { 𝑓𝑖}𝑛𝑖=0 be a T-system of order 𝑛 on some set
X with |X| ≥ 𝑛 + 1. Let Y ⊆ X with |Y| ≥ 𝑛 + 1. Then G := { 𝑓𝑖 |Y}𝑛𝑖=0 is a T-system
of order 𝑛 on Y.

Proof. See Problem 4.1. ⊓⊔

The set X does not require any structure or property except |X| ≥ 𝑛 + 1.
In the theory of T-systems we often deal with one special matrix. We use the

following abbreviation.

Definition 4.4. Let 𝑛 ∈ N0, F = { 𝑓𝑖}𝑛𝑖=0 be a family of real functions on a set X
with |X| ≥ 𝑛 + 1. We define the matrix

(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
:=

©­­­­«
𝑓0 (𝑥0) 𝑓1 (𝑥0) . . . 𝑓𝑛 (𝑥0)
𝑓0 (𝑥1) 𝑓1 (𝑥1) . . . 𝑓𝑛 (𝑥1)
...

...
...

𝑓0 (𝑥𝑛) 𝑓1 (𝑥𝑛) . . . 𝑓𝑛 (𝑥𝑛)

ª®®®®¬
= ( 𝑓𝑖 (𝑥 𝑗 ))𝑛𝑖, 𝑗=0 (4.4)

for any 𝑥0, . . . , 𝑥𝑛 ∈ X.

Lemma 4.5 (see e.g. [KN77, p. 31]). Let 𝑛 ∈ N0, X be a set with |X| ≥ 𝑛 + 1, and
F = { 𝑓𝑖}𝑛𝑖=0 be a family of real functions 𝑓𝑖 : X → R. The following are equivalent:

(i) F is a T-system of order 𝑛 on X.
(ii) The determinant

det
(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
does not vanish for any pairwise distinct points 𝑥0, . . . , 𝑥𝑛 ∈ X.

Proof. (i) ⇒ (ii): Let 𝑥0, . . . , 𝑥𝑛 ∈ X be pairwise distinct. Since F is a T-system we
have that any non-trivial polynomial 𝑓 has at most 𝑛 zeros, i.e., the matrix(

𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
has trivial kernel and hence its determinant is non-zero. Since 𝑥0, . . . , 𝑥𝑛 ∈ X are
arbitrary pairwise distinct we have (ii).

(ii) ⇒ (i): Assume there is a polynomial 𝑓 with
∑𝑛
𝑖=0 𝑎

2
𝑖
> 0 which has the 𝑛 + 1

pairwise distinct zeros 𝑧0, . . . , 𝑧𝑛 ∈ X. Then the matrix
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𝑍 =

(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑧0 𝑧1 . . . 𝑧𝑛

)
has non-trivial kernel since 0 ≠ (𝑎0, 𝑎1, . . . , 𝑎𝑛)𝑇 ∈ ker 𝑍 and hence det 𝑍 = 0 in
contradiction to (ii). ⊓⊔

Lemma 4.5 is used in [KS66, p. 3, Dfn. 2.1] as the definition of a continuous
T-system where it is called a weak T-system. In [KS66, p. 22, Thm. 4.1] then the
equivalence to Definition 4.2 is shown.
Remark 4.6. Lemma 4.5 implies that for any 𝑥 ∈ X there is a 𝑓 ∈ lin F such that
𝑓 (𝑥) ≠ 0, i.e., the 𝑓0, . . . , 𝑓𝑛 do not have common zeros. ◦
Remark 4.7. After adjusting the sign of 𝑓𝑛 in a continuous T-system F = { 𝑓𝑖}𝑛𝑖=0 on
[𝑎, 𝑏] we can assume that

det
(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
> 0

holds for all 𝑎 ≤ 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 ≤ 𝑏. ◦
The previous lemma implies the following.

Corollary 4.8 (see e.g. [KN77, p. 33]). Let 𝑛 ∈ N0, and F = { 𝑓𝑖}𝑛𝑖=0 be a T-system
of order 𝑛 on some set X with |X| ≥ 𝑛 + 1. Let W be a set with 𝑛 + 1 ≤ |W| ≤ |X|
and let 𝑔 : W → X be injective. Then G = {𝑔𝑖}𝑛𝑖=0 with 𝑔𝑖 := 𝑓𝑖 ◦ 𝑔 is a T-system of
order 𝑛 on W.

Proof. See Problem 4.2. ⊓⊔

Corollary 4.9 (see e.g. [KS66, p. 10] or [KN77, p. 33]). Let 𝑛 ∈ N0, and F = { 𝑓𝑖}𝑛𝑖=0
be a T-system of order 𝑛 on some set X with |X| ≥ 𝑛 + 1. Let 𝑔 : X → R be such
that 𝑔 > 0 on X. Then G = {𝑔𝑖}𝑛𝑖=0 with 𝑔𝑖 := 𝑔 · 𝑓𝑖 is a T-system of order 𝑛 on X.

Proof. See Problem 4.3. ⊓⊔

Corollary 4.10 (see e.g. [KN77, p. 33]). Let 𝑛 ∈ N0, and F = { 𝑓𝑖}𝑛𝑖=0 be a T-system
of order 𝑛 on some set X with |X| ≥ 𝑛 + 1. The following hold:

(i) The functions 𝑓0, . . . , 𝑓𝑛 are linearly independent over X.
(ii) For any 𝑓 =

∑𝑛
𝑖=0 𝑎𝑖 · 𝑓𝑖 ∈ lin F the coefficients 𝑎0, . . . , 𝑎𝑛 ∈ R are unique.

Proof. See Problem 4.4. ⊓⊔

The previous corollary extends to the following result.

Theorem 4.11 (see e.g. [KN77, p. 33]). Let 𝑛 ∈ N0, F be a T-system on some set
X with |X| ≥ 𝑛 + 1, and let 𝑥0, . . . , 𝑥𝑛 ∈ X be 𝑛 + 1 pairwise different points. The
following hold:

(i) Every 𝑓 ∈ lin F is uniquely determined by its values 𝑓 (𝑥0), . . . , 𝑓 (𝑥𝑛).
(ii) For any 𝑦0, . . . , 𝑦𝑛 ∈ R there exists a unique 𝑓 ∈ lin F such that 𝑓 (𝑥𝑖) = 𝑦𝑖

holds for all 𝑖 = 0, . . . , 𝑛.
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Proof. (i): Since 𝑓 ∈ lin F we have 𝑓 =
∑𝑛
𝑖=0 𝑎𝑖 · 𝑓𝑖 . Let 𝑥1, . . . , 𝑥𝑛 ∈ X be pairwise

distinct points. Then by Lemma 4.5 (i) ⇒ (ii) we have that

©­­«
𝑓 (𝑥0)
...

𝑓 (𝑥𝑛)

ª®®¬ =

(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
·
©­­«
𝛼0
...

𝛼𝑛

ª®®¬
has the unique solution 𝛼0 = 𝑎0, . . . , 𝛼𝑛 = 𝑎𝑛.

(ii): By the same argument as in (i) the system

©­­«
𝑦0
...

𝑦𝑛

ª®®¬ =

(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
·
©­­«
𝛼0
...

𝛼𝑛

ª®®¬
has the unique solution 𝛼0 = 𝑎0, . . . , 𝛼𝑛 = 𝑎𝑛. ⊓⊔

4.3 The Curtis–Mairhuber–Sieklucki Theorem

So far we imposed no structure on the set X. We now get a structure of X. The
following structural result was proved in [Mai56, Thm. 2] for compact subsets X of
R𝑛 and for arbitrary compact sets X in [Sie58] and [Cur59, Thm. 8 and Cor.].
Curtis–Mairhuber–Sieklucki Theorem 4.12. Let 𝑛 ∈ N0 and F be a continuous
T-system of order 𝑛 on a topological spaceX. IfX is a compact metrizable space then
X can be homeomorphically embedded in the unit circle {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦2 = 1}.

The proof is not difficult but technical and too lengthy for our purposes. We
therefore refer the reader to [Cur59, Thm. 8].

An immediate consequence of the Curtis–Mairhuber–Sieklucki Theorem 4.12
is that every T-system is up to homomorphisms one-dimensional, i.e., in algebraic
applications of the theory of T-systems we can only deal with the univariate case.
Additionally, we have the following result.
Corollary 4.13 (see e.g. [Cur59, Cor. after Thm. 8]). The order 𝑛 of a periodic
T-system is even.

Proof. Let 𝜑 : [0, 2𝜋] → 𝑆 = {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦2} with 𝜑(𝛼) = (sin𝛼, cos𝛼) and
F = { 𝑓𝑖}𝑛𝑖=0 be a periodic T-system. Then the 𝑓𝑖 are continuous and hence also

det
(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑡0 𝑡1 . . . 𝑡𝑛

)
is continuous in 𝑡0, . . . , 𝑡𝑛 ∈ 𝑆. If F is a T-system we have that

𝑑 (𝛼) := det
(
𝑓0 𝑓1 . . . 𝑓𝑛

𝜑(𝛼) 𝜑(𝛼 + 2𝜋/(𝑛 + 1)) . . . 𝜑(𝛼 + 2𝑛𝜋/(𝑛 + 1))

)
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in non-zero for all 𝛼 ∈ [0, 2𝜋] and never changes singes. If 𝑛 is odd then 𝑑 (0) =

−𝑑 (2𝜋/(𝑛 + 1)) which is a contradiction. Hence, 𝑛 must be even. ⊓⊔

4.4 Examples of T-Systems

Example 4.14 (Example 4.1 continued). Let 𝑛 ∈ N0 and X = R. Then the family
F = {𝑥𝑖}𝑛

𝑖=0 of monomials is a T-system. To see this let 𝑥0 < 𝑥1 < · · · < 𝑥𝑛 be 𝑛 + 1
points in R. We then have by the Vandermonde determinant

det
(

1 𝑥 . . . 𝑥𝑛

𝑥0 𝑥1 . . . 𝑥𝑛

)
=

∏
0≤𝑖< 𝑗≤𝑛

(𝑥 𝑗 − 𝑥𝑖) (4.5)

which is always non-zero and hence F is a T-system of order 𝑛 onR by Lemma 4.5.
Additionally, by Corollary 4.3 we have that F is a T-system of order 𝑛 on any Y ⊆ R
with |Y| ≥ 𝑛 + 1. ◦

Note, that in (4.5) the functions 𝑓𝑖 should be written more precisely as

𝑓𝑖 : R→ R, 𝑥 ↦→ 𝑥𝑖

and not just as 𝑥𝑖 . However, we then would have the notation(
·0 ·1 . . . ·𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
or more general

(
·𝛼0 ·𝛼1 . . . ·𝛼𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
for 𝛼𝑖 with −∞ < 𝛼0 < 𝛼1 < · · · < 𝛼𝑛 < ∞ which seems to be hard to read. We will
therefore abuse the notation and use 𝑥𝑖 , 𝑥𝛼𝑖 , and (4.5).

Example 4.14 can be generalized to non-negative real exponents.

Example 4.15 (see e.g. [KS66, p. 9, Exm. 1] or [KN77, p. 38, §2(d)]). Let 𝑛 ∈ N0
and let 0 = 𝛼0 < 𝛼1 < · · · < 𝛼𝑛 be non-negative reals. Then

F = {𝑥𝛼0 , 𝑥𝛼1 , . . . , 𝑥𝛼𝑛 }

is a T-system of order 𝑛 on any X ⊆ [0,∞) with |X| ≥ 𝑛 + 1. ◦

If we restrict X to X ⊆ (0,∞) then we can allow arbitrary real exponents 𝛼𝑖 .

Example 4.16. Let 𝑛 ∈ N and 𝛼0 < 𝛼1 < · · · < 𝛼𝑛 be reals. Then

F = {𝑥𝛼0 , 𝑥𝛼1 , . . . , 𝑥𝛼𝑛 }

is a T-system on any X ⊆ (0,∞) with |X| ≥ 𝑛 + 1. ◦

By using exp : R→ (0,∞) we find that the previous example is by Corollary 4.8
equivalent to the following.
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Example 4.17 (see e.g. [KN77, p. 38]). Let 𝑛 ∈ N and 𝛼0 < 𝛼1 < · · · < 𝛼𝑛 be reals.
Then

G = {𝑒𝛼0𝑥 , 𝑒𝛼1𝑥 , . . . , 𝑒𝛼𝑛𝑥}

is a T-system on any Y ⊆ R with |Y| ≥ 𝑛 + 1. ◦

That the equivalent Examples 4.16 and 4.17 are T-systems will be postponed to
Examples 5.18. The reason is that with the introduction of ET-systems in Chapter 5
and especially Theorem 5.14 we generate plenty of examples of ET- and T-systems.

Example 4.18 (see e.g. [PS64, p. 41, no. 26] or [KN77, p. 37-38]). Let 𝑛 ∈ N and
𝛼0 < 𝛼1 < · · · < 𝛼𝑛 be reals. Then

F =

{
1

𝑥 + 𝛼0
,

1
𝑥 + 𝛼1

, . . . ,
1

𝑥 + 𝛼𝑛

}
is a continuous T-system on any [𝑎, 𝑏] or [𝑎,∞) with −𝛼0 < 𝑎 < 𝑏. ◦

Proof. See Problem 4.5. ⊓⊔

Example 4.19 (see e.g. [KN77, p. 38]). Let 𝑛 ∈ N and let 𝑓 ∈ C𝑛 (X,R) with
X = [𝑎, 𝑏], 𝑎 < 𝑏, and 𝑓 (𝑛) > 0 on X. Then

F = {1, 𝑥, 𝑥2, . . . , 𝑥𝑛−1, 𝑓 }

is a continuous T-system of order 𝑛 on X = [𝑎, 𝑏]. We can also allow X = (𝑎, 𝑏),
[𝑎,∞), (−∞, 𝑏), . . . . ◦

With the techniques developed in Chapter 5 it will be easy to show that Exam-
ple 4.19 is not only a T-system but in fact also an ET- and ECT-system. We will
therefore postpone its proof to Problem 5.5.

4.5 Representation as a Determinant, Zeros, and Non-Negativity

The following result shows that when enough zeros of a polynomial 𝑓 ∈ lin F are
known then 𝑓 has the following representation as a determinant.

Theorem 4.20 (see e.g. [KN77, p. 33]). Let 𝑛 ∈ N, F = { 𝑓𝑖}𝑛𝑖=0 be a T-system on
some set X with |X| ≥ 𝑛 + 1, 𝑥1, . . . , 𝑥𝑛 ∈ X be 𝑛 pairwise distinct points, and let
𝑓 ∈ lin F . The following are equivalent:

(i) 𝑓 (𝑥𝑖) = 0 holds for all 𝑖 = 1, . . . , 𝑛.
(ii) There exists a constant 𝑐 ∈ R such that

𝑓 (𝑥) = 𝑐 · det
(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥 𝑥1 . . . 𝑥𝑛

)
. (4.6)
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Proof. (ii) ⇒ (i): Clear.
(i) ⇒ (ii): If 𝑓 = 0 then 𝑐 = 0 so the assertion holds. If 𝑓 ≠ 0 then there exists

a point 𝑥0 ∈ X \ {𝑥1, . . . , 𝑥𝑛} such that 𝑓 (𝑥0) ≠ 0 since F is a T-system. Then
also the determinant in (ii) is non-zero and we can choose 𝑐 such that both 𝑓 and
the scaled determinant coincide also in 𝑥0. By Corollary 4.10 a polynomial 𝑓 is
uniquely determined by its values 𝑓 (𝑥𝑖) at 𝑥0, . . . , 𝑥𝑛. This shows that (4.6) is the
only polynomial which fulfills (i). ⊓⊔

So far we treated general T-systems. For further properties we go to continuous T-
systems. By the Curtis–Mairhuber–Sieklucki Theorem 4.12 we can assume X ⊆ R.

Definition 4.21. Let 𝑛 ∈ N0, F be a continuous T-system on X ⊆ R an interval,
𝑓 ∈ lin F , and let 𝑥0 be a zero of 𝑓 . Then 𝑥0 ∈ intX is called a non-nodal zero if
𝑓 does not change sign at 𝑥0. Otherwise the zero 𝑥0 is called nodal, i.e., either 𝑓
changes signs at 𝑥0 or 𝑥0 is a boundary point of X.

The following result bounds the number of nodal and non-nodal zeros.

Theorem 4.22 (see [Kre51, Lem. 3.1] or e.g. [KN77, p. 34, Thm. 1.1]). Let 𝑛 ∈ N0,
F be a continuous T-system of order 𝑛 on X = [𝑎, 𝑏] with −∞ < 𝑎 < 𝑏 < ∞. If
𝑓 ∈ lin F has 𝑘 ∈ N0 non-nodal zeros and 𝑙 ∈ N0 nodal zeros in X then 2𝑘 + 𝑙 ≤ 𝑛.

The proof is adapted from [KN77, pp. 34, Thm. 1.1].

Proof. We make two case distinctions, one for 𝑘 = 0 and one for 𝑘 ≥ 1.
𝑘 = 0: If 𝑓 ∈ lin F has 𝑙 zeros then 𝑙 ≤ 𝑛 by Definition 4.2.
𝑘 ≥ 1: Let 𝑥1, . . . , 𝑥𝑝 ∈ intX with 𝑝 ≤ 𝑘 + 𝑙 be the zeros of 𝑓 in intX. Set

𝑀𝑖 := max
𝑥𝑖−1≤𝑥≤𝑥𝑖

| 𝑓 (𝑥) |

for all 𝑖 = 1, . . . , 𝑝 + 1 with 𝑥0 = 𝑎 and 𝑥𝑝+1 = 𝑏. Additionally, set

𝑚 :=
1
2

min
𝑖=1,..., 𝑝+1

𝑀𝑖 ,

i.e., 𝑚 > 0.
We construct a polynomial 𝑔1 ∈ lin F such that

(a) 𝑔1 has the value 𝑔(𝑥𝑖) = 𝑚 at the non-nodal zeros 𝑥𝑖 of 𝑓 with 𝑓 ≥ 0 in a
neighborhood of 𝑥𝑖 ,

(b) 𝑔1 has the values 𝑔(𝑥𝑖) = −𝑚 at the non-nodal zeros 𝑥𝑖 of 𝑓 with 𝑓 ≤ 0 in
a neighborhood of 𝑥𝑖 , and

(c) 𝑔1 vanishes at all nodal zeros 𝑥𝑖 , i.e., 𝑔(𝑥𝑖) = 0.

After renumbering the zeros 𝑥𝑖 we can assume 𝑥1, . . . , 𝑥𝑘1 fulfill (a), 𝑥𝑘1+1, . . . , 𝑥𝑘1+𝑘2

fulfill (b), and 𝑥𝑘1+𝑘2+1, . . . , 𝑥𝑘1+𝑘2+𝑙 fulfill (c) with 𝑘1 + 𝑘2 = 𝑘 . By Definition 4.2
we have 𝑘 + 𝑙 ≤ 𝑛 and hence by Lemma 4.5 we have that



4.5 Representation as a Determinant, Zeros, and Non-Negativity 55

©­­­­­­­­­­­­­­­­«

𝑚
...

𝑚

−𝑚
...

−𝑚
0
...

0

ª®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­­«

𝑓0 (𝑥1) . . . 𝑓𝑛 (𝑥1)
...

...

𝑓0 (𝑥𝑘1 ) . . . 𝑓𝑛 (𝑥𝑘1 )
𝑓0 (𝑥𝑘1+1) . . . 𝑓𝑛 (𝑥𝑘1+1)

...
...

𝑓0 (𝑥𝑘) . . . 𝑓𝑛 (𝑥𝑘)
𝑓0 (𝑥𝑘+1) . . . 𝑓𝑛 (𝑥𝑘+1)

...
...

𝑓0 (𝑥𝑘+𝑙) . . . 𝑓𝑛 (𝑥𝑘+𝑙)

ª®®®®®®®®®®®®®®®®¬

·
©­­«
𝛽0
...

𝛽𝑛

ª®®¬ (4.7)

has at least one solution, say 𝛽0 = 𝑏0, . . . , 𝛽𝑛 = 𝑏𝑛. Then 𝑔1 =
∑𝑛
𝑖=0 𝑏𝑖 · 𝑓𝑖 ∈ lin F

fulfills (a) to (c).
Set

𝜌 :=
𝑚

2 · ∥𝑔1∥∞
and define 𝑔2 := 𝑓 − 𝑔1.

We show that to each non-nodal zero 𝑥𝑖 of 𝑓 there correspond two zeros of 𝑔2.
Let 𝑥𝑖 be a non-nodal zero of 𝑓 with 𝑓 ≥ 0 in a neighborhood of 𝑥𝑖 . We can find a
point 𝑦𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖) and a point 𝑦𝑖+1 ∈ (𝑥𝑖 , 𝑥𝑖+1) such that

𝑓 (𝑦𝑖) = 𝑀𝑖 > 𝑚 and 𝑓 (𝑦𝑖+1) = 𝑀𝑖+1 > 𝑚.

Hence, 𝑔2 (𝑦𝑖) > 0 and 𝑔2 (𝑦𝑖+1) > 0. Since 𝑔2 (𝑥𝑖) = −𝜌 · 𝑚 < 0 it follows that 𝑔2
has a zero both in (𝑦𝑖 , 𝑥𝑖) and in (𝑥𝑖 , 𝑦𝑖+1).

Additionally, 𝑔2 also vanishes at all nodal zeros of 𝑓 and therefore has at least
2𝑘 + 𝑙 distinct zeros. By Definition 4.2 we have 2𝑘 + 𝑙 ≤ 𝑛. ⊓⊔

The previous result holds for more general sets X.

Corollary 4.23. Theorem 4.22 holds for sets X ⊆ R of the form

(i) X = (𝑎, 𝑏), [𝑎, 𝑏), (𝑎, 𝑏] with −∞ < 𝑎 < 𝑏 < ∞,
(ii) X = (𝑎,∞), [𝑎,∞), (−∞, 𝑏), (−∞, 𝑏] with −∞ < 𝑎, 𝑏 < ∞,

(iii) X = {𝑥1, . . . , 𝑥𝑘} ⊆ R with 𝑘 ≥ 𝑛 + 1 and 𝑥1 < · · · < 𝑥𝑘 , and
(iv) countable unions of (i) to (iii).

Proof. X = [0,∞): Let 0 ≤ 𝑥1 < · · · < 𝑥𝑘 be the zeros of 𝑓 in [0,∞). Since every
T-system on [0,∞) is also a T-system on [0, 𝑏] for any 𝑏 > 0 by Corollary 4.3 the
assertion follows from Theorem 4.22 with 𝑏 = 𝑥𝑘 + 1.

For the other assertions adapt (if necessary) the proof of Theorem 4.22. ⊓⊔

That non-nodal points are always inner points and have a weight of (at least) 2
in counting with multiplicities as well as that boundary points are always non-nodal
and are counted (at least) once in counting the multiplicities is generalized in the
following.
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Definition 4.24. Let 𝑥 ∈ [𝑎, 𝑏] with 𝑎 ≤ 𝑏. We define the index 𝜀(𝑥) by

𝜀(𝑥) :=

{
2 if 𝑥 ∈ (𝑎, 𝑏),
1 if 𝑥 = 𝑎 or 𝑏.

(4.8)

The same definition holds for sets as in Corollary 4.23.
Let X ⊆ R be a set. We define the index 𝜀(X) of the set X by

𝜀(X) :=
∑︁
𝑥∈X

𝜀(𝑥). (4.9)

We now want to show that for each T-system F not only non-negative polynomials
𝑓 ∈ lin F exists but we can even specify the zeros. We need the following definition.

Definition 4.25. Let 𝑛 ∈ N0 and F be a T-system of order 𝑛 on some set X. We
define

(lin F )𝑒 :=

{
𝑛∑︁
𝑖=0

𝑎𝑖 · 𝑓𝑖

����� 𝑛∑︁
𝑖=0

𝑎2
𝑖 = 1

}
,

(lin F )+ := { 𝑓 ∈ lin F | 𝑓 ≥ 0 on X} ,

and

(lin F )𝑒+ := (lin F )𝑒 ∩ (lin F )+.

With these definitions we can prove the following existence criteria for non-
negative polynomials in a T-systems on [𝑎, 𝑏].

Theorem 4.26 (see [Kre51, Lem. 3.2] or e.g. [KN77, p. 35, Thm. 1.2]). Let 𝑛 ∈ N0,
F be a continuous T-system on X = [𝑎, 𝑏], and let 𝑥1, . . . , 𝑥𝑚 ∈ X be 𝑚 distinct
points for some 𝑚 ∈ N. The following are equivalent:

(i) The points 𝑥1, . . . , 𝑥𝑚 are zeros of a non-negative polynomial 𝑓 ∈ lin F .

(ii)
𝑚∑︁
𝑖=1

𝜀(𝑥𝑖) ≤ 𝑛.

The proof is adapted from [KN77, pp. 35, Thm. 1.2].

Proof. “(i) ⇒ (ii)” is Theorem 4.22 and we therefore only have to prove “(ii) ⇒ (i)”.
Case I: At first assume that 𝑎 < 𝑥1 < · · · < 𝑥𝑚 < 𝑏 and

∑𝑚
𝑖=0 𝜀(𝑥𝑖) = 2𝑚 = 𝑛.

If 2𝑚 < 𝑛 then add 𝑘 additional points 𝑥𝑚+1, . . . , 𝑥𝑚+𝑘 such that 2𝑚 + 2𝑘 = 𝑛 and
𝑥𝑚 < 𝑥𝑚+1 < · · · < 𝑥𝑚+𝑘 < 𝑏.

Select a sequence of points (𝑥 ( 𝑗 )1 , . . . , 𝑥
( 𝑗 )
𝑚 ) ∈ R𝑚, 𝑗 ∈ N, such that

𝑎 < 𝑥1 < 𝑥
( 𝑗 )
1 < · · · < 𝑥𝑚 < 𝑥 ( 𝑗 )𝑚 < 𝑏

for all 𝑗 ∈ N and lim 𝑗→∞ 𝑥
( 𝑗 )
𝑖

= 𝑥𝑖 for all 𝑖 = 1, . . . , 𝑚. Set
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𝑔 𝑗 (𝑥) := 𝑐 𝑗 · det
(
𝑓0 𝑓1 𝑓2 . . . 𝑓2𝑚−1 𝑓2𝑚

𝑥 𝑥1 𝑥
( 𝑗 )
1 . . . 𝑥𝑚 𝑥

( 𝑗 )
𝑚

)
∈ (lin F )𝑒 (4.10)

for some 𝑐 𝑗 > 0. Since (lin F )𝑒 is compact we can assume that 𝑔 𝑗 converges to some
𝑔0 ∈ (lin F )𝑒. Then 𝑔0 has 𝑥1, . . . , 𝑥𝑚 as zeros with 𝜀(𝑥𝑖) = 2 and 𝑔0 is non-negative
since 𝑔 𝑗 > 0 on [𝑎, 𝑥1), (𝑥 ( 𝑗 )1 , 𝑥2), . . . , (𝑥 ( 𝑗 )

𝑚−1, 𝑥𝑚), and (𝑥 ( 𝑗 )𝑚 , 𝑏] as well as 𝑔 𝑗 < 0
on (𝑥1, 𝑥

( 𝑗 )
1 ), (𝑥2, 𝑥

( 𝑗 )
2 ), . . . , (𝑥𝑚, 𝑥 ( 𝑗 )𝑚 ).

Case II: If 𝑎 = 𝑥1 < 𝑥2 < · · · < 𝑥𝑚 < 𝑏 with
∑𝑚
𝑖=1 𝜀(𝑥𝑖) = 2𝑚 − 1 = 𝑛 the only

modification required in case I is to replace (4.10) by

𝑔 𝑗 (𝑥) := −𝑐 𝑗 · det
(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓2𝑚−2 𝑓2𝑚−1

𝑥 𝑎 𝑥2 𝑥
( 𝑗 )
2 . . . 𝑥𝑚 𝑥

( 𝑗 )
𝑚

)
∈ (lin F )𝑒

with some normalizing factor 𝑐 𝑗 > 0.
Case III: The procedure is similar if 𝑥𝑚 = 𝑏 and

∑𝑚
𝑖=1 𝜀(𝑥𝑖) = 𝑛. ⊓⊔

Remark 4.27. Theorem 4.26 appears in [KN77, p. 35, Thm. 1.2] in a stronger version,
see also [Kre51, Lem. 3.4].

In [KN77, p. 35, Thm. 1.2] and [Kre51, Lem. 3.4] Krein claims that the 𝑥1, . . . , 𝑥𝑚
are the only zeros of some non-negative 𝑓 ∈ lin F . This holds when 𝑛 = 2𝑚 + 2𝑝
for some 𝑝 ≥ 0 and 𝑥1, . . . , 𝑥𝑚 ∈ intX. To see this add to 𝑥1, . . . , 𝑥𝑚 in (4.10)
points 𝑥𝑚+1, . . . , 𝑥𝑚+𝑝 ∈ intX \ {𝑥1, . . . , 𝑥𝑚} and get 𝑔0. Hence, 𝑔0 ≥ 0 has ex-
actly the zeros 𝑥1, . . . , 𝑥𝑚+𝑝 . Then construct in a similar way 𝑔̃0 with the zeros
𝑥1, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑚+𝑝 with 𝑥𝑚+1, . . . , 𝑥𝑚+𝑝 ∈ intX \ {𝑥1, . . . , 𝑥𝑚+𝑝}. Hence,
𝑔0 + 𝑔̃0 ≥ 0 has only the zeros 𝑥1, . . . , 𝑥𝑚.

A similar construction works for 𝑛 = 2𝑚 + 1 with or without end points 𝑎 or 𝑏. If
𝑥1, . . . , 𝑥𝑚 contains no end point, i.e., all 𝑥𝑖 ∈ intX, then construct a 𝑔0 with an zero
in 𝑎 (and therefore 𝑔0 (𝑏) > 0 since the index is odd) and a 𝑔̃0 with zero in 𝑏 (and
therefore 𝑔̃0 (𝑎) > 0). Then 𝑔0 + 𝑔̃0 has no end point as a zero.

However, Krein misses that for 𝑛 = 2𝑚 + 2𝑝 with 𝑝 ≥ 0 and when one end point
is contained in 𝑥1, . . . , 𝑥𝑚 then it might happen that also the other end point must
appear. In [KS66, p. 28, Thm. 5.1] additional conditions are given which ensure that
𝑥1, . . . , 𝑥𝑚 are the only zeros of some 𝑓 ≥ 0.

For example if also { 𝑓𝑖}𝑛−1
𝑖=0 is a T-system then it can be ensured that 𝑥1, . . . , 𝑥𝑚

are the only zeros of some non-negative polynomial 𝑓 ∈ lin F , see [KS66, p. 28,
Thm. 5.1 (b-i)], see Problem 4.7. For our main example(s), the algebraic polynomials
with gaps, this holds.

The same problem appears in [KN77, p. 36, Thm. 1.3]. A weaker but correct
version is given in Theorem 4.30 below.

Theorem 4.22 with the condition that F is an ET-system [KS66, p. 28, Thm. 5.1]
is given below in Theorem 5.20. ◦
Remark 4.28. Assume that in Theorem 4.26 we have additionally that 𝑓0, . . . , 𝑓𝑛 ∈
C1 ( [𝑎, 𝑏],R). Then in (4.10) we can set 𝑥 ( 𝑗 )

𝑖
= 𝑥𝑖 + 𝑗−1 for all 𝑖 = 0, . . . , 𝑚 and

𝑗 ≫ 1. For 𝑗 → ∞ with 𝑐 𝑗 := 𝑗𝑚 we then get
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𝑔0 (𝑥) = lim
𝑗→∞

𝑗𝑚 · det
(
𝑓0 𝑓1 𝑓2 . . . 𝑓2𝑚−1 𝑓2𝑚
𝑥 𝑥1 𝑥1 + 𝑗−1 . . . 𝑥𝑚 𝑥𝑚 + 𝑗−1

)

= lim
𝑗→∞

𝑗𝑚 · det

©­­­­­­­­«

𝑓0 (𝑥) . . . 𝑓2𝑚 (𝑥)
𝑓0 (𝑥1) . . . 𝑓2𝑚 (𝑥1)

𝑓0 (𝑥1 + 𝑗−1) . . . 𝑓2𝑚 (𝑥1 + 𝑗−1)
...

...

𝑓0 (𝑥𝑚) . . . 𝑓2𝑚 (𝑥𝑚)
𝑓0 (𝑥𝑚 + 𝑗−1) . . . 𝑓2𝑚 (𝑥𝑚 + 𝑗−1)

ª®®®®®®®®¬
= lim
𝑗→∞

det

©­­­­­­­­­­«

𝑓0 (𝑥) . . . 𝑓2𝑚 (𝑥)
𝑓0 (𝑥1) . . . 𝑓2𝑚 (𝑥1)

𝑓0 (𝑥1+ 𝑗−1 )− 𝑓0 (𝑥1 )
𝑗−1 . . .

𝑓2𝑚 (𝑥1+ 𝑗−1 )− 𝑓2𝑚 (𝑥1 )
𝑗−1

...
...

𝑓0 (𝑥𝑚) . . . 𝑓2𝑚 (𝑥𝑚)
𝑓0 (𝑥𝑚+ 𝑗−1 )− 𝑓0 (𝑥𝑚 )

𝑗−1 . . .
𝑓2𝑚 (𝑥𝑚+ 𝑗−1 )− 𝑓2𝑚 (𝑥𝑚 )

𝑗−1

ª®®®®®®®®®®¬
(4.11)

= det

©­­­­­­­­«

𝑓0 (𝑥) . . . 𝑓2𝑚 (𝑥)
𝑓0 (𝑥1) . . . 𝑓2𝑚 (𝑥1)
𝑓 ′0 (𝑥1) . . . 𝑓 ′2𝑚 (𝑥1)
...

...

𝑓0 (𝑥𝑚) . . . 𝑓2𝑚 (𝑥𝑚)
𝑓 ′0 (𝑥𝑚) . . . 𝑓

′
2𝑚 (𝑥𝑚)

ª®®®®®®®®¬
,

i.e., a double zero at 𝑥 𝑗 is included by including the values 𝑓 ′
𝑖
(𝑥 𝑗 ), 𝑖 = 0, . . . , 𝑛. We

will define that procedure and need these definitions for ET-systems in Chapter 5. ◦

Corollary 4.29. Theorem 4.26 also holds for intervals X ⊆ R, i.e.,

X = (𝑎, 𝑏), (𝑎, 𝑏], [𝑎, 𝑏), [𝑎, 𝑏], (𝑎,∞), [𝑎,∞), (−∞, 𝑏), (−∞, 𝑏], and R
(4.12)

with 𝑎 < 𝑏.

Proof. We have that “(i) ⇒ (ii)” follows from Corollary 4.23. For “(ii) ⇒ (i)” we
apply Theorem 4.26 on [min𝑖 𝑥𝑖 ,max𝑖 𝑥𝑖]. ⊓⊔

We will now give a sharper version of Theorem 4.22, see also Remark 4.27.

Theorem 4.30 (see e.g. [KS66, p. 30, Thm. 5.2]). Let 𝑛 ∈ N and F be a continuous
T-system on X = [𝑎, 𝑏]. Additionally, let 𝑥1, . . . , 𝑥𝑘 ∈ X and 𝑦1, . . . , 𝑦𝑙 ∈ X be
pairwise distinct points. The following are equivalent:

(i) There exists a polynomial 𝑓 ∈ lin F such that

(a) 𝑥1, . . . , 𝑥𝑘 are the non-nodal zeros of 𝑓 and
(b) 𝑦1, . . . , 𝑦𝑙 are the nodal zeros of 𝑓 .

(ii) 2𝑘 + 𝑙 ≤ 𝑛.
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Proof. (i) ⇒ (ii): That is Theorem 4.22.
(ii) ⇒ (i): Adapt the proof and especially the 𝑔 𝑗 ’s in (4.10) of Theorem 4.26

accordingly. Let 𝑧1 < · · · < 𝑧𝑘+𝑙 be the 𝑥𝑖’s and 𝑦𝑖’s together ordered by size. Then
in 𝑔 𝑗 treat every nodal 𝑧𝑖 like the endpoint 𝑎 or 𝑏, i.e., include it only once in the
determinant, and insert for every non-nodal point 𝑧𝑖 the point 𝑧𝑖 and the sequence
𝑧
( 𝑗 )
𝑖

∈ (𝑧𝑖 , 𝑧𝑖+1) with lim 𝑗→∞ 𝑧
( 𝑗 )
𝑖

= 𝑧𝑖 . ⊓⊔

Corollary 4.31. Theorem 4.30 also holds for sets X ⊆ R of the form

(i) X = (𝑎, 𝑏), [𝑎, 𝑏), (𝑎, 𝑏] with 𝑎 < 𝑏,
(ii) X = (𝑎,∞), [𝑎,∞), (−∞, 𝑏), (−∞, 𝑏],

(iii) X = {𝑥1, . . . , 𝑥𝑘} ⊆ R with 𝑘 ≥ 𝑛 + 1 and 𝑥1 < · · · < 𝑥𝑘 , and
(iv) finitely many unions of (i) to (iii).

Proof. In the adapted proof and the 𝑔 𝑗 ’s in (4.10) of Theorem 4.26 we do not need
to have non-negativity, i.e., in the 𝑔 𝑗 ’s sign changes at the 𝑦𝑖’s are allowed (and even
required). ⊓⊔

Problems

4.1 Prove Corollary 4.3.

4.2 Prove Corollary 4.8.

4.3 Prove Corollary 4.9.

4.4 Prove Corollary 4.10.

4.5 Prove Example 4.18.

4.6 Why does (4.7) have at least one solution?

4.7 Assume in Theorem 4.26 we not only have that F = { 𝑓𝑖}𝑛𝑖=0 is a T-system of
order 𝑛, but additionally that { 𝑓𝑖}𝑛−1

𝑖=0 is T-systems of order 𝑛− 1. Then show that the
following are equivalent:

(i) The distinct points 𝑥1, . . . , 𝑥𝑝 ∈ [𝑎, 𝑏] are the only zeros of some non-negative
polynomial 𝑓 ∈ lin F .

(ii)
∑𝑝

𝑖=1 𝜀(𝑥𝑖) ≤ 𝑛.





Chapter 5
ET- and ECT-Systems

Curiouser and curiouser!

Lewis Carroll: Alice’s Adventures in Wonderland

In this chapter we introduce the concept of ET- and ECT-systems, i.e., extended and
extended complete Tchebycheff systems. The sparse algebraic polynomial systems
on (0,∞) are the main examples. Being an ET-system is required for certain Positiv-
and Nichtnegativstellensätze in later chapters.

5.1 Definitions and Basic Properties

We remind the reader that a function 𝑓 ∈ C𝑛 (R,R) has a zero at 𝑥0 ∈ R of
multiplicity (at least) 𝑚 if

𝑓 (𝑘 ) (𝑥0) = 0 for all 𝑘 = 0, 1, . . . , 𝑚 − 1. (5.1)

For univariate polynomials 𝑓 ∈ R[𝑥] this translates into a factorization

𝑓 (𝑥) = (𝑥 − 𝑥0)𝑚 · 𝑔(𝑥) for some 𝑔 ∈ R[𝑥] . (5.2)

While the concept of T-systems comes from the univariate polynomials, a relation
like (5.2) is in general not accessible for T-systems. Hence, we rely on the more
general (analytic) notion (5.1) of multiplicity but still call it algebraic multiplicity.
At endpoints of intervals [𝑎, 𝑏] we use of course the one-sided derivatives.

Definition 5.1. Let 𝑛 ∈ N and let F = { 𝑓𝑖}𝑛𝑖=0 ⊆ C𝑛 ( [𝑎, 𝑏],R) be a T-system of
order 𝑛 on [𝑎, 𝑏] with 𝑎 < 𝑏. F is called an extended Tchebycheff system (short
ET-system) on [𝑎, 𝑏] if any polynomial 𝑓 ∈ lin F \ {0} has at most 𝑛 zeros in [𝑎, 𝑏]
counting algebraic multiplicities.

Remark 5.2. It is clear that every ET-system is also a T-system by only allowing
multiplicity one for each zero. ◦

In Remark 4.28 eq. (4.11) we showed how double zeros can be included in the
determinantal representation. Whenever we have C1-functions in F = { 𝑓𝑖}𝑛𝑖=0 and
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𝑥0 < · · · < 𝑥𝑖 = 𝑥𝑖+1 < · · · < 𝑥𝑛

we define

(
𝑓0 . . . 𝑓𝑖−1 𝑓𝑖 𝑓𝑖+1 𝑓𝑖+2 . . . 𝑓𝑛
𝑥0 . . . 𝑥𝑖−1 (𝑥𝑖 𝑥𝑖) 𝑥𝑖+2 . . . 𝑥𝑛

)
:=

©­­­­­­­­­­­­­«

𝑓0 (𝑥0) . . . 𝑓𝑛 (𝑥0)
...

...

𝑓0 (𝑥𝑖−1) . . . 𝑓𝑛 (𝑥𝑖−1)
𝑓0 (𝑥𝑖) . . . 𝑓𝑛 (𝑥𝑖)
𝑓 ′0 (𝑥𝑖) . . . 𝑓 ′𝑛 (𝑥𝑖)
𝑓0 (𝑥𝑖+2) . . . 𝑓𝑛 (𝑥𝑖+2)
...

...

𝑓0 (𝑥𝑛) . . . 𝑓𝑛 (𝑥𝑛)

ª®®®®®®®®®®®®®¬
(5.3)

and equivalently when 𝑥 𝑗 = 𝑥 𝑗+1, 𝑥𝑘 = 𝑥𝑘+1, . . . for additional entries.
We use the additional brackets “(” and “)” to indicate that 𝑥𝑖 is inserted in the

𝑓0, . . . , 𝑓𝑛 and then also into 𝑓 ′0 , . . . , 𝑓
′
𝑛 to distinguish (5.3) from Definition 4.4 to

avoid confusion. Hence, in Definition 4.4 we have

det
(
𝑓0 . . . 𝑓𝑖−1 𝑓𝑖 𝑓𝑖+1 𝑓𝑖+2 . . . 𝑓𝑛
𝑥0 . . . 𝑥𝑖−1 𝑥𝑖 𝑥𝑖 𝑥𝑖+2 . . . 𝑥𝑛

)
= 0

since in two rows 𝑥𝑖 is inserted into 𝑓0, . . . , 𝑓𝑛, while in (5.3) we have that(
𝑓0 . . . 𝑓𝑖−1 𝑓𝑖 𝑓𝑖+1 𝑓𝑖+2 . . . 𝑓𝑛
𝑥0 . . . 𝑥𝑖−1 (𝑥𝑖 𝑥𝑖) 𝑥𝑖+2 . . . 𝑥𝑛

)
indicates that 𝑥𝑖 is inserted in 𝑓0, . . . , 𝑓𝑛 and then also into 𝑓 ′0 , . . . , 𝑓

′
𝑛.

Extending this to zeros of multiplicity 𝑚 for C𝑚−1-functions is straight forward
and we leave it to the reader to write down the formulas. Similar to (5.3) we write
for any 𝑎 ≤ 𝑥0 ≤ 𝑥1 ≤ · · · ≤ 𝑥𝑛 ≤ 𝑏 the matrix as(

𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)∗
(5.4)

when 𝑓0, . . . , 𝑓𝑛 are sufficiently differentiable.
We often want to express polynomials 𝑓 ∈ lin F as determinants (4.10) only

by knowing their zeros 𝑥1, . . . , 𝑥𝑘 . If arbitrary multiplicities appear we only have
𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛 where we include zeros multiple times according to their
algebraic multiplicities. Hence, for

𝑥0 = · · · = 𝑥𝑖1 < 𝑥𝑖1+1 = · · · = 𝑥𝑖2 < . . . < 𝑥𝑖𝑘+1 = · · · = 𝑥𝑛

we introduce a simpler notation to write down (5.3):
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𝑓0 𝑓1 𝑓2 . . . 𝑓𝑛
𝑥 𝑥1 𝑥2 . . . 𝑥𝑛

)
:=

(
𝑓0 𝑓1 . . . 𝑓𝑖1 𝑓𝑖1+1 . . . 𝑓𝑖2 . . . 𝑓𝑖𝑘+1 . . . 𝑓𝑖𝑘+1
𝑥 (𝑥1 . . . 𝑥𝑖1 ) (𝑥𝑖1+1 . . . 𝑥𝑖2 ) . . . (𝑥𝑖𝑘+1 . . . 𝑥𝑛)

)
.

(5.5)
Clearly (5.5) ∈ lin F . For (5.5) to be well-defined we need F ⊆ C𝑚−1 where 𝑚 is
the largest multiplicity of any zero.

We see here why we require in Definition 5.1 F = { 𝑓𝑖}𝑛𝑖=0 ⊆ C𝑛 ( [𝑎, 𝑏],R). In
the case of 𝑥0 = 𝑥1 = · · · = 𝑥𝑛 the functions 𝑓𝑖 need to be C𝑛 ( [𝑎, 𝑏],R), not just
C𝑛−1 ( [𝑎, 𝑏],R).

Similar to Lemma 4.5 we have the following.

Theorem 5.3 ([Kre51] or e.g. [KN77, p. 37, P.1.1]). Let 𝑛 ∈ N and F = { 𝑓𝑖}𝑛𝑖=0 ⊆
C𝑛 ( [𝑎, 𝑏],R) with 𝑎 < 𝑏. Then the following are equivalent:

(i) F is an ET-system.
(ii) We have

det
(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)∗
≠ 0

for every 𝑎 ≤ 𝑥0 ≤ 𝑥1 ≤ · · · ≤ 𝑥𝑛 ≤ 𝑏.

Proof. Let 𝑥0, . . . , 𝑥𝑛 ∈ [𝑎, 𝑏] with

𝑎 ≤ 𝑥0 = · · · = 𝑥𝑖1 < 𝑥𝑖1+1 = · · · = 𝑥𝑖2 < . . . < 𝑥𝑖𝑘 = · · · = 𝑥𝑛 ≤ 𝑏

be the zeros of some 𝑓 =
∑𝑛
𝑖=0 𝑎𝑛 𝑓𝑖 ∈ lin F . We get the coefficients 𝑎0, . . . , 𝑎𝑛 from

the system

0 =

©­­­­­­­­­­­«

𝑓 (𝑥0)
𝑓 ′ (𝑥0)
...

𝑓 (𝑖1 ) (𝑥0)
𝑓 (𝑥𝑖1+1)

...

𝑓 (𝑛−𝑖𝑘 ) (𝑥𝑖𝑘 )

ª®®®®®®®®®®®¬
=

(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)∗
︸              ︷︷              ︸

=:𝑀

·
©­­­­«
𝑎0
𝑎1
...

𝑎𝑛

ª®®®®¬
. (5.6)

Hence, since 𝑥0, . . . , 𝑥𝑛 are arbitrary we have (i) F is an ET-systems ⇔ 𝑎0 = · · · =
𝑎𝑛 = 0 ⇔ (5.6) has only the trivial solution ⇔ 𝑀 has full rank ⇔ (ii). ⊓⊔

Remark 5.4. Similar to Remark 4.7 for T-systems we can assume after a sign change
in 𝑓𝑛 that for every ET-system F = { 𝑓𝑖}𝑛𝑖=0 on [𝑎, 𝑏] we have that

det
(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)∗
> 0

holds for all 𝑎 ≤ 𝑥0 ≤ 𝑥1 ≤ · · · ≤ 𝑥𝑛 ≤ 𝑏 since F ⊆ C𝑛 ( [𝑎, 𝑏],R). ◦
An even more special case of ET-systems and therefore T-systems are the ECT-

systems which we define now.
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Definition 5.5. Let 𝑛 ∈ N0 and let 𝑓0, . . . , 𝑓𝑛 ∈ C𝑛 ( [𝑎, 𝑏],R) with 𝑎 < 𝑏. The
family F = { 𝑓0}𝑛𝑖=0 is called an extended complete Tchebycheff system (short ECT-
system) on [𝑎, 𝑏] if { 𝑓𝑖}𝑘𝑖=0 is an ET-system on [𝑎, 𝑏] for all 𝑘 = 0, . . . , 𝑛.

5.2 Wronskian Determinant

To handle and work with ECT-systems it is useful to introduce the following deter-
minant.

Definition 5.6. Let 𝑛 ∈ N0 and let 𝑓0, . . . , 𝑓𝑛 ∈ C𝑛 ( [𝑎, 𝑏],R) be with 𝑎 < 𝑏.
For each 𝑘 = 0, . . . , 𝑛 we define the Wronskian determinant (short Wronskian)
W( 𝑓0, . . . , 𝑓𝑘) of 𝑓0, . . . , 𝑓𝑘 to be

W( 𝑓0, 𝑓1, . . . , 𝑓𝑘) := det

©­­­­­«
𝑓0 𝑓 ′0 . . . 𝑓

(𝑘 )
0

𝑓1 𝑓 ′1 . . . 𝑓
(𝑘 )

1
...
...

...

𝑓𝑘 𝑓
′
𝑘
. . . 𝑓

(𝑘 )
𝑘

ª®®®®®¬
. (5.7)

The Wronskian is a common tool in the theory of ordinary differential equations.
In the previous definition (5.7) we could also shortly write

W( 𝑓0, . . . , 𝑓𝑘) (𝑥) := det
(
𝑓0 𝑓1 . . . 𝑓𝑘
𝑥 𝑥 . . . 𝑥

)∗
for all 𝑥 ∈ [𝑎, 𝑏].

Let 𝑚1, . . . , 𝑚𝑘 ∈ N with 𝑚1 + · · · +𝑚𝑘 = 𝑛 + 1 and 𝑥1 < · · · < 𝑥𝑘 . Then the first
𝑚 𝑗 columns of W( 𝑓0, . . . , 𝑓𝑛) are the 𝑚 𝑗 columns in(

𝑓0 . . . 𝑓𝑚1−1 𝑓𝑚1 . . . 𝑓𝑚1+𝑚2−1 𝑓𝑚1+𝑚2 . . . 𝑓𝑛
𝑥1 . . . 𝑥1 𝑥2 . . . 𝑥2 𝑥3 . . . 𝑥𝑘

)∗
involving 𝑥 𝑗 .

Lemma 5.7. Let 𝑛 ∈ N0, let F = { 𝑓𝑖}𝑛𝑖=0 be an ET-system on [𝑎, 𝑏] with 𝑎 < 𝑏, and
let 𝑔 ∈ C𝑛 ( [𝑎, 𝑏],R) with 𝑔 > 0. Then

G := {𝑔𝑖}𝑛𝑖=0 with 𝑔𝑖 := 𝑔 · 𝑓𝑖

is an ET-system and we have

W(𝑔0, . . . , 𝑔𝑛) = 𝑔𝑛+1 · W( 𝑓0, . . . , 𝑓𝑛).

Proof. See Problem 5.1. ⊓⊔
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Lemma 5.8. Let 𝑛 ∈ N0, let F = { 𝑓𝑖}𝑛𝑖=0 be an ET-system on [𝑐, 𝑑], and 𝑔 ∈
C𝑛 ( [𝑎, 𝑏], [𝑐, 𝑑]) with 𝑔′ > 0 on [𝑎, 𝑏]. Then

G := { 𝑓𝑖 ◦ 𝑔}𝑛𝑖=0 with 𝑔𝑖 := 𝑓𝑖 ◦ 𝑔

is an ET-system on [𝑎, 𝑏] with

W(𝑔0, . . . , 𝑔𝑛) = (𝑔′)
𝑛(𝑛+1)

2 · W( 𝑓0, . . . , 𝑓𝑛) ◦ 𝑔.

Proof. See Problem 5.2. ⊓⊔

For the Wronskian the following reduction property holds.

Lemma 5.9 (see e.g. [KS66, p. 377]). Let 𝑛 ∈ N0 and let 𝑓0, . . . , 𝑓𝑛 ∈ C𝑛 ( [𝑎, 𝑏],R)
be with 𝑎 < 𝑏 and 𝑓0 > 0. Then for the reduced system 𝑔0, . . . , 𝑔𝑛−1 ∈
C𝑛−1 ( [𝑎, 𝑏],R) defined by

𝑔𝑖 :=
(
𝑓𝑖+1
𝑓0

) ′
(5.8)

for all 𝑖 = 0, . . . , 𝑛 − 1 we have

W( 𝑓0, . . . , 𝑓𝑛) = 𝑓 𝑛+1
0 · W(𝑔0, . . . , 𝑔𝑛−1). (5.9)

Proof. See Problem 5.3. ⊓⊔

Remark 5.10. Since 𝑓0, . . . , 𝑓𝑛 ∈ C𝑛 ( [𝑎, 𝑏],R) we have that W( 𝑓0, . . . , 𝑓𝑘) (𝑥) is
continuous in 𝑥 ∈ [𝑎, 𝑏] and hence after adjusting the signs of 𝑓0, . . . , 𝑓𝑛 we have
that (5.7) being non-zero on [𝑎, 𝑏] is equivalent to W( 𝑓0, . . . , 𝑓𝑘) > 0 on [𝑎, 𝑏] for
all 𝑘 = 0, . . . , 𝑛, see also Remark 4.7 and Remark 5.4. ◦

Lemma 5.11 (see e.g. [KS66, pp. 242–245, Lem. 5.1 - 5.3]). Let 𝑛 ∈ N0 and let
𝑓1, . . . , 𝑓𝑛 ∈ C𝑛 ( [𝑎, 𝑏],R) be such that

W( 𝑓0) > 0, . . . , W( 𝑓0, . . . , 𝑓𝑛) > 0

on [𝑎, 𝑏]. Define functions 𝑔0, . . . , 𝑔𝑛 : [𝑎, 𝑏] → R by

𝑔0 := 𝑓0

𝑔1 := 𝐷0 𝑓1

𝑔2 := 𝐷1𝐷0 𝑓2

...

𝑔𝑛 := 𝐷𝑛−1 . . . 𝐷1𝐷0 𝑓𝑛

with
𝐷 𝑗 𝑓 :=

(
𝑓

𝑔 𝑗

) ′
, 𝑖.𝑒., 𝐷 𝑗 =

d
d𝑥

1
𝑔 𝑗
. (5.10)

Then
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(i) 𝑔𝑖 ∈ C𝑛−𝑖 ( [𝑎, 𝑏],R) are well defined with

𝑔1 =
W( 𝑓0, 𝑓1)

𝑓 2
0

and 𝑔𝑖 =
W( 𝑓0, . . . , 𝑓𝑖) · W( 𝑓0, . . . , 𝑓𝑖−2)

W( 𝑓0, . . . , 𝑓𝑖−1)2

for all 𝑖 = 2, . . . , 𝑛,
(ii) 𝑔𝑖 > 0 on [𝑎, 𝑏] for all 𝑖 = 0, . . . , 𝑛,

(iii) for any 𝑔𝑛+1 ∈ C([𝑎, 𝑏],R) with 𝑔𝑛+1 > 0 on [𝑎, 𝑏] we define

𝑓𝑛+1 (𝑥) := 𝑔0 (𝑥)
∫ 𝑥

𝑎

𝑔1 (𝑦1)
∫ 𝑦1

𝑎

𝑔2 (𝑦2)· · ·
∫ 𝑦𝑛

𝑎

𝑔𝑛+1 (𝑦𝑛+1) d𝑦𝑛+1 . . . d𝑦1

and we get
𝑔𝑛+1 = 𝐷𝑛 . . . 𝐷1𝐷0 𝑓𝑛+1,

(iv) for all 𝑘 = 0, . . . , 𝑛 + 1 we have

W( 𝑓0, . . . , 𝑓𝑘) = 𝑔𝑘+1
0 𝑔𝑘1 · · · 𝑔𝑘

with 𝑔𝑛+1 and 𝑓𝑛+1 from (iii),
(v) there exists a 𝑓𝑛+1 ∈ C𝑛+1 ( [𝑎, 𝑏],R) such that

W( 𝑓0, . . . , 𝑓𝑛, 𝑓𝑛+1) > 0

on [𝑎, 𝑏], and
(vi) for all 𝑘 = 0, . . . , 𝑛 + 1 the families { 𝑓𝑖}𝑘𝑖=0 are T-systems on [𝑎, 𝑏].

Proof. (i) and (ii): Since W( 𝑓0) > 0 we have 𝑓0 > 0 and hence 𝑔1 = ( 𝑓1/ 𝑓0)′ is
well-defined and we have

W( 𝑓0, 𝑓1)
𝑓 2
0

= 𝑓 −2
0 · det

(
𝑓0 𝑓 ′0
𝑓1 𝑓 ′1

)
=
𝑓0 𝑓

′
1 − 𝑓1 𝑓

′
0

𝑓 2
0

=

(
𝑓1
𝑓0

) ′
= 𝑔1,

i.e., 𝑔1 > 0 on [𝑎, 𝑏]. The relations for 𝑔𝑖 for all 𝑖 = 2, . . . , 𝑛 follow by induction
from Sylvester’s identity [Syl51, AAM96].

(iii): From the definition of 𝑓𝑛+1 we get immediately 𝑔𝑛+1 = 𝐷𝑛 . . . 𝐷1𝐷0 𝑓𝑛+1.
(iv): Follows immediately from (i).
(v): Take the 𝑓𝑛+1 from (iii).
(vi): For 𝑘 = 0 it is clear that { 𝑓𝑖}0

𝑖=0 is a T-system since 𝑓0 > 0 on [𝑎, 𝑏].
So assume that for any 𝑓0, . . . , 𝑓𝑛−1 with W( 𝑓0, . . . , 𝑓𝑘) > 0 on [𝑎, 𝑏] for all
𝑘 = 0, . . . , 𝑛−1 we have that all { 𝑓𝑖}𝑘𝑖=0 with 𝑘 = 0, . . . , 𝑛−1 are T-systems. We show
that { 𝑓𝑖}𝑛𝑖=0 is also a T-system. So let 𝑥0, . . . , 𝑥𝑛 ∈ [𝑎, 𝑏] with 𝑥0 < 𝑥1 < · · · < 𝑥𝑛.
We then have

det
(
𝑓0 . . . 𝑓𝑛
𝑥0 . . . 𝑥𝑛

)
= det( 𝑓𝑖 (𝑥 𝑗 ))𝑛𝑖, 𝑗=0

and factoring out 𝑓0 (𝑥 𝑗 ) > 0 in each column gives
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=

𝑛∏
𝑗=0

𝑓0 (𝑥 𝑗 ) · det
(
𝑓𝑖 (𝑥 𝑗 )

)𝑛
𝑖, 𝑗=0

with 𝑓𝑖 := 𝑓𝑖/ 𝑓0 for all 𝑖 = 0, . . . , 𝑛 and substracting from each row its predecessor
(the row above) gives

=

𝑛∏
𝑗=0

𝑓0 (𝑥 𝑗 ) · det
(
𝛿0, 𝑗 , 𝑓1 (𝑥 𝑗 ) − 𝑓1 (𝑥 𝑗−1), . . . , 𝑓𝑛 (𝑥 𝑗 ) − 𝑓𝑛 (𝑥 𝑗−1)

)𝑛
𝑗=0 .

Expanding along the first column and applying the theorem of the mean gives

=

𝑛∏
𝑗=0

𝑓0 (𝑥 𝑗 ) ·
𝑛−1∏
𝑖=0

(𝑥𝑖+1 − 𝑥𝑖) · det
(
𝑓𝑖 (𝑦 𝑗 )

)𝑛−1

𝑖, 𝑗=0

for some 𝑦0, . . . , 𝑦𝑛−1 with 𝑥0 < 𝑦0 < 𝑥1 < 𝑦1 < · · · < 𝑦𝑛−1 < 𝑥𝑛 and 𝑓𝑖 :=
( 𝑓𝑖+1/ 𝑓0)′ for all 𝑖 = 0, . . . , 𝑛 − 1. The family { 𝑓𝑖}𝑛−1

𝑖=0 is the reduced system from
Lemma 5.9 and hence by (5.9) we have

W( 𝑓0, . . . , 𝑓𝑘−1) =
W( 𝑓0, . . . , 𝑓𝑘)

𝑓 𝑘+1
0

> 0

on [𝑎, 𝑏] for all 𝑘 = 1, . . . , 𝑛. By the induction hypothesis we have that { 𝑓𝑖}𝑛−1
𝑖=0 is a

T-system, i.e.,

det
(
𝑓𝑖 (𝑦 𝑗 )

)𝑛−1

𝑖, 𝑗=0
≠ 0 ⇒ det

(
𝑓0 . . . 𝑓𝑛
𝑥0 . . . 𝑥𝑛

)
≠ 0

and { 𝑓𝑖}𝑛𝑖=0 is a T-system which ends the proof. ⊓⊔

The previous lemma is used to characterize all ECT-systems.

5.3 Characterizations of ECT-Systems

We have the following characterization of ECT-systems.

Theorem 5.12 (see e.g. [KS66, p. 376, Thm. 1.1]). Let 𝑛 ∈ N0 and let 𝑓0, . . . , 𝑓𝑛 ∈
C𝑛 ( [𝑎, 𝑏],R) be with 𝑎 < 𝑏. The following are equivalent:

(i) F = { 𝑓𝑖}𝑛𝑖=0 is an ECT-system.
(ii) For all 𝑘 = 0, . . . , 𝑛 we have that W( 𝑓0, . . . , 𝑓𝑘) ≠ 0 on [𝑎, 𝑏].

After adjusting the signs of 𝑓0, . . . , 𝑓𝑛 by Remark 5.10 we can in Theorem 5.12
(ii) also assume that W( 𝑓0, . . . , 𝑓𝑘) > 0 on [𝑎, 𝑏] for all 𝑘 = 0, . . . , 𝑛.

The following proof is adapted from [KS66, pp. 376–379].
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Proof. (i) ⇒ (ii): Since every ECT-system is also an ET-system the statement is
Theorem 5.3 (i) ⇒ (ii) because

W( 𝑓0, . . . , 𝑓𝑘) (𝑥) =
(
𝑓0 𝑓1 . . . 𝑓𝑘
𝑥 𝑥 . . . 𝑥

)∗
for all 𝑥 ∈ [𝑎, 𝑏].

(ii) ⇒ (i): To show that F is an ECT-system we have to show that { 𝑓𝑖}𝑘𝑖=0 is an
ET-system for all 𝑘 = 0, . . . , 𝑛. And to show that { 𝑓𝑖}𝑘𝑖=0 is an ET-system it is by
Theorem 5.3 sufficient to show

det
(
𝑓0 𝑓1 . . . 𝑓𝑘
𝑥0 𝑥1 . . . 𝑥𝑘

)∗
≠ 0

for every 𝑎 ≤ 𝑥0 ≤ 𝑥1 ≤ · · · ≤ 𝑥𝑘 ≤ 𝑏. We make two case distinctions:

Case I: All 𝑥0, . . . , 𝑥𝑘 are pairwise distinct: 𝑥0 < 𝑥1 < · · · < 𝑥𝑛.
Case II: At least once we have 𝑥 𝑗 = 𝑥 𝑗+1 for some 𝑗 = 0, . . . , 𝑛 − 1.

After renaming 𝑥0, . . . , 𝑥𝑘 we can assume 𝑎 ≤ 𝑥1 < 𝑥2 < · · · < 𝑥𝑙 ≤ 𝑏 and
𝑚1, . . . , 𝑚𝑙 ∈ N are the algebraic multiplicities with 𝑚1 + · · · + 𝑚𝑙 = 𝑛 + 1 for some
𝑙 ∈ N0.

Case I: We have 𝑚0 = · · · = 𝑚𝑘 = 1 and that is Lemma 5.11 (vi).
Case II: We assume 𝑚 𝑗 ≥ 2 for some 𝑗 . We show that we can reduce the system.
We show this reduction by induction over 𝑛.
Induction beginning (𝑛 = 0): SinceW( 𝑓0) (𝑥) ≠ 0 it is an ET- and an ECT-system.

We can assume by changing the sign of 𝑓0 that 𝑓0 > 0 on [𝑎, 𝑏].
Induction step (𝑛 − 1 → 𝑛): By the induction beginning (𝑛 = 0) we can assume

𝑓0 > 0 on [𝑎, 𝑏]. Then we have to show that

det
(
𝑓0 𝑓1 . . . 𝑓𝑚1−1 𝑓𝑚1 . . . 𝑓𝑛
𝑥1 𝑥1 . . . 𝑥1 𝑥2 . . . 𝑥𝑙

)∗
(5.11)

is non-zero. To show this we factor 𝑓0 (𝑥 𝑗 ) > 0 out of the 𝑚 𝑗 rows containing 𝑥 𝑗 in
(5.11) for each 𝑗 = 0, . . . , 𝑙 to get

det

©­­­­­­­­«

1 𝑓 ′0
𝑓0
(𝑥1) . . .

𝑓
(𝑚1−1)

0
𝑓0

(𝑥1) 1 . . .
𝑓
(𝑚𝑙−1)

0
𝑓0

(𝑥𝑙)
𝑓1
𝑓0
(𝑥1)

𝑓 ′1
𝑓0
(𝑥1) . . .

𝑓
(𝑚1−1)

1
𝑓0

(𝑥1) 𝑓1
𝑓0
(𝑥2) . . .

𝑓
(𝑚𝑙−1)

1
𝑓0

(𝑥𝑙)
...

...
...

...
...

𝑓𝑛
𝑓0
(𝑥1) 𝑓 ′𝑛

𝑓0
(𝑥1) . . . 𝑓

(𝑚1−1)
𝑛

𝑓0
(𝑥1) 𝑓𝑛

𝑓0
(𝑥2) . . . 𝑓

(𝑚𝑙−1)
𝑛

𝑓0
(𝑥𝑙)

ª®®®®®®®®¬
.

Then subtract from each of the columns containing 𝑥 𝑗 a linear combination
of its predecessors to obtain for these 𝑚 𝑗 columns the first 𝑚 𝑗 columns of
W(1, 𝑓1/ 𝑓0, . . . , 𝑓𝑛/ 𝑓0) evaluated at 𝑥 𝑗 :
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det

©­­­­­­­­«

1
(
𝑓0
𝑓0

) ′
(𝑥1) . . .

(
𝑓0
𝑓0

) (𝑚1−1)
(𝑥1) 1 . . .

(
𝑓0
𝑓0

) (𝑚𝑙−1)
(𝑥𝑙)

𝑓1
𝑓0
(𝑥1)

(
𝑓1
𝑓0

) ′
(𝑥1) . . .

(
𝑓1
𝑓0

) (𝑚1−1)
(𝑥1) 𝑓1

𝑓0
(𝑥2) . . .

(
𝑓1
𝑓0

) (𝑚𝑙−1)
(𝑥𝑙)

...
...

...
...

...

𝑓𝑛
𝑓0
(𝑥1)

(
𝑓𝑛
𝑓0

) ′
(𝑥1) . . .

(
𝑓𝑛
𝑓0

) (𝑚1−1)
(𝑥1) 𝑓𝑛

𝑓0
(𝑥2) . . .

(
𝑓𝑛
𝑓0

) (𝑚𝑙−1)
(𝑥𝑙)

ª®®®®®®®®¬
= det

©­­­­­­­«

1 0 . . . 0 1 . . . 0
𝑓1
𝑓0
(𝑥1)

(
𝑓1
𝑓0

) ′
(𝑥1) . . .

(
𝑓1
𝑓0

) (𝑚1−1)
(𝑥1) 𝑓1

𝑓0
(𝑥2) . . .

(
𝑓1
𝑓0

) (𝑚𝑙−1)
(𝑥𝑙)

...
...

...
...

...

𝑓𝑛
𝑓0
(𝑥1)

(
𝑓𝑛
𝑓0

) ′
(𝑥1) . . .

(
𝑓𝑛
𝑓0

) (𝑚1−1)
(𝑥1) 𝑓𝑛

𝑓0
(𝑥2) . . .

(
𝑓𝑛
𝑓0

) (𝑚𝑙−1)
(𝑥𝑙)

ª®®®®®®®¬
.

The Leibniz rule on differentiation, here for us explicitly(
𝑓𝑖

𝑓0

) (𝑘 )
=

𝑘∑︁
𝑗=0

(
𝑘

𝑗

)
· 𝑓 (𝑘− 𝑗 )
𝑖

·
(

1
𝑓0

) ( 𝑗 )
,

ensures that this is always possible.
We then subtract from each column which starts with a 1 its predecessor which

also starts with a 1 and apply the mean value theorem to get apart from the positive
factor (𝑥 𝑗+1 − 𝑥 𝑗 )

det

©­­­­­­­«

1 0 . . . 0 0 0 . . . 0
𝑓1
𝑓0
(𝑥1)

(
𝑓1
𝑓0

) ′
(𝑥1) . . .

(
𝑓1
𝑓0

) (𝑚1−1)
(𝑥1)

(
𝑓1
𝑓0

) ′
(𝑦2)

(
𝑓1
𝑓0

) ′
(𝑥2) . . .

(
𝑓1
𝑓0

) (𝑚𝑙−1)
(𝑥𝑙)

...
...

...
...

...

𝑓𝑛
𝑓0
(𝑥1)

(
𝑓𝑛
𝑓0

) ′
(𝑥1) . . .

(
𝑓𝑛
𝑓0

) (𝑚1−1)
(𝑥1)

(
𝑓𝑛
𝑓0

) ′
(𝑦2)

(
𝑓1
𝑓0

) ′
(𝑥2) . . .

(
𝑓𝑛
𝑓0

) (𝑚𝑙−1)
(𝑥𝑙)

ª®®®®®®®¬
with 𝑥1 < 𝑦2 < 𝑥2 < · · · < 𝑥𝑙 and expanding by the first row gives

det

©­­­­­«

(
𝑓1
𝑓0

) ′
(𝑥1) . . .

(
𝑓1
𝑓0

) (𝑚1−1)
(𝑥1)

(
𝑓1
𝑓0

) ′
(𝑦2)

(
𝑓1
𝑓0

) ′
(𝑥2) . . .

(
𝑓1
𝑓0

) (𝑚𝑙−1)
(𝑥𝑙)

...
...

...
...(

𝑓𝑛
𝑓0

) ′
(𝑥1) . . .

(
𝑓𝑛
𝑓0

) (𝑚1−1)
(𝑥1)

(
𝑓𝑛
𝑓0

) ′
(𝑦2)

(
𝑓1
𝑓0

) ′
(𝑥2) . . .

(
𝑓𝑛
𝑓0

) (𝑚𝑙−1)
(𝑥𝑙)

ª®®®®®¬
.

(5.12)
In (5.12) we now have the reduced system 𝑔𝑖 := ( 𝑓𝑖+1/ 𝑓0)′ with 𝑖 = 0, . . . , 𝑛 − 1

from (5.8) in Lemma 5.9. By (5.9) in Lemma 5.9 and since the reduced systems is
of dimension 𝑛 − 1 where the inductions hypotheses holds we have that (5.12) is
non-zero and hence also (5.11) is non-zero which we wanted to prove. ⊓⊔

Remark 5.13 (see e.g. [KS66, p. 379, Rem. 1.2]). We find the following complete
characterization of ECT-systems which requires the additional property (5.13). For-
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tunately, this seemingly additional property can always be generated by a change of
basis vectors, i.e., for any vector space spanned by an ECT-system a suitable basis
with (5.13) can be found. ◦

Theorem 5.14 (see e.g. [KS66, p. 379, Thm. 1.2]). Let 𝑛 ∈ N0 and let 𝑓0, . . . , 𝑓𝑛 ∈
C𝑛 ( [𝑎, 𝑏],R) be such that

𝑓
(𝑘 )
𝑗

(𝑎) = 0 (5.13)

holds for all 𝑘 = 0, . . . , 𝑗 − 1 and 𝑗 = 1, . . . , 𝑛. After suitable sign changes in
𝑓0, . . . , 𝑓𝑛 the following are equivalent:

(i) There exist 𝑔0, . . . , 𝑔𝑛 with 𝑔𝑖 ∈ C𝑛−𝑖 ( [𝑎, 𝑏],R) and 𝑔𝑖 > 0 on [𝑎, 𝑏] for all
𝑖 = 0, . . . , 𝑛 such that

𝑓0 (𝑥) = 𝑔0 (𝑥)

𝑓1 (𝑥) = 𝑔0 (𝑥) ·
∫ 𝑥

𝑎

𝑔1 (𝑦1) d𝑦1

𝑓2 (𝑥) = 𝑔0 (𝑥) ·
∫ 𝑥

𝑎

𝑔1 (𝑦1) ·
∫ 𝑦1

𝑎

𝑔2 (𝑦2) d𝑦2 d𝑦1

...

𝑓𝑛 (𝑥) = 𝑔0 (𝑥) ·
∫ 𝑥

𝑎

𝑔1 (𝑦1) ·
∫ 𝑦1

𝑎

𝑔2 (𝑦2) . . .
∫ 𝑦𝑛−1

𝑎

𝑔𝑛 (𝑦𝑛) d𝑦𝑛 . . . d𝑦2 d𝑦1.

(ii) { 𝑓𝑖}𝑛𝑖=0 is an ECT-system on [𝑎, 𝑏].
(iii) W( 𝑓0, . . . , 𝑓𝑘) > 0 on [𝑎, 𝑏] for all 𝑘 = 0, . . . , 𝑛.

If one and therefore all of the equivalent conditions (i) – (iii) hold then the 𝑔𝑖 in (i)
are given by

𝑔0 := 𝑓0 and 𝑔𝑖 := 𝐷𝑖−1 . . . 𝐷1𝐷0 𝑓𝑖 with 𝐷𝑖 :=
d
d𝑥

1
𝑓0

for all 𝑖 = 1, . . . , 𝑛 or equivalently by

𝑔0 := 𝑓0, 𝑔1 :=
W( 𝑓0, 𝑓1)

𝑓 2
0

, and 𝑔𝑖 :=
W( 𝑓0, . . . , 𝑓𝑖) · W( 𝑓0, . . . , 𝑓𝑖−2)

W( 𝑓0, . . . , 𝑓𝑖−1)2

for all 𝑖 = 2, . . . , 𝑛.

Proof. “(ii) ⇔ (iii)” is Theorem 5.12, “(iii) ⇒ (i)” is Lemma 5.11 (i) – (iii), and
“(i) ⇒ (iii)” is Lemma 5.11 (iv). ⊓⊔

Condition (ii) in Theorem 5.14 is of course to be understood after suitable sign
changes in 𝑓0, . . . , 𝑓𝑛.

The partial statement Theorem 5.14 (i) ⇒ (ii) can be found e.g. in [KS66, p. 19,
Exm. 12] and [KN77, pp. 39–40, P.2.4].
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5.4 Examples of ET- and ECT-Systems

An equivalent result as Corollary 4.3 for T-systems, i.e., restricting the domain X of
a T-system leads again to a T-system, also holds for ET- and ECT-systems. We leave
that to the reader, see Problem 5.4. Hence, it is sufficient to give (examples of) ET-
and ECT-systems with the largest possible domain X ⊆ R.

While the condition of being an ET-system or being even an ECT-system seems
very restrictive, several examples are known.

Example 5.15. Let 𝑛 ∈ N0 and F = {𝑥𝑖}𝑛
𝑖=0. Then F on R is an ECT-system. ◦

Proof. Clearly, F ⊂ C∞ (R,R) and every non-trivial 𝑓 ∈ lin F = R[𝑥]≤𝑛 has at
most 𝑛 real zeros counting multiplicities by the fundamental theorem of algebra, i.e.,
F is an ET-systems. Besides that we have that

W(1, 𝑥, 𝑥2, . . . , 𝑥𝑘) (𝑥) = det

©­­­­­­«

1 0 0 . . . 0
𝑥 1 0 . . . 0
𝑥2 2𝑥 2 . . . 0
...

...
...

...

𝑥𝑘 𝑘𝑥𝑘 𝑘 (𝑘 − 1)𝑥𝑘−1 . . . 𝑘!

ª®®®®®®¬
≥ 1

holds for all 𝑥 ∈ R and 𝑘 = 0, . . . , 𝑛 which shows that F is also an ECT-system. ⊓⊔

Example 5.16. Let F = {1, 𝑥, 𝑥3} on [0, 𝑏] with 𝑏 > 0. Then F is a T-system (see
Example 4.15) but not an ET-system. To see this let 𝑥0 = 𝑥1 = 𝑥2 = 0, then(

𝑓0 𝑓1 𝑓2
0 0 0

)∗
=

©­«
1 0 0
0 1 0
0 0 0

ª®¬ .
This shows that F is not an ET-system. ◦

In the previous example the position 𝑥 = 0 prevents the T-system to be an ET-
system. If 𝑥 = 0 is removed then it is even an ECT-system.

Example 5.17. Let 𝛼0, . . . , 𝛼𝑛 ∈ N0 with 𝛼0 < 𝛼1 < · · · < 𝛼𝑛. Then F = {𝑥𝛼𝑖 }𝑛
𝑖=0

on (0,∞) is an ECT-system. For 𝑛 = 2𝑚 and 0 < 𝑥1 < 𝑥2 < · · · < 𝑥𝑚 we often
encounter a specific polynomial structure and hence we write it down explicitly once:

det
(
𝑥𝛼0 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
= lim
𝜀→0

𝜀−𝑚 · det
(
𝑥𝛼0 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 𝑥1 𝑥1 + 𝜀 . . . 𝑥𝑚 𝑥𝑚 + 𝜀

)
= lim
𝜀→0

[
𝑚∏
𝑖=1

(𝑥𝑖 − 𝑥) (𝑥𝑖 + 𝜀 − 𝑥)
]
·


∏
1≤𝑖< 𝑗≤𝑚

(𝑥 𝑗 − 𝑥𝑖)2 (𝑥 𝑗 − 𝑥𝑖 − 𝜀) (𝑥 𝑗 + 𝜀 − 𝑥𝑖)


(5.14)
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× 𝑠𝛼 (𝑥, 𝑥1, 𝑥1 + 𝜀, . . . , 𝑥𝑚, 𝑥𝑚 + 𝜀)

=

𝑚∏
𝑖=1

(𝑥𝑖 − 𝑥)2 ·
∏

1≤𝑖< 𝑗≤𝑚
(𝑥 𝑗 − 𝑥𝑖)4 · 𝑠𝛼 (𝑥, 𝑥1, 𝑥1, . . . , 𝑥𝑚, 𝑥𝑚)

where 𝑠𝛼 is the Schur polynomial of 𝛼 = (𝛼0, . . . , 𝛼𝑛) [Mac95]. Hence,

𝑠𝛼 (𝑥, 𝑥1, 𝑥1, . . . , 𝑥𝑚, 𝑥𝑚)

is not divisible by any (𝑥𝑖 − 𝑥). ◦

Proof. Combine the induction

𝑓 (𝑚+1) (𝑥) = lim
ℎ→0

𝑓 (𝑚) (𝑥 + ℎ) − 𝑓 (𝑚) (𝑥)
ℎ

and
det

(
𝑥𝛼0 . . . 𝑥𝛼𝑛

𝑥0 . . . 𝑥𝑛

)
=

∏
0≤𝑖< 𝑗≤𝑛

(𝑥 𝑗 − 𝑥𝑖) · 𝑠𝛼 (𝑥0, . . . , 𝑥𝑛)

where 𝑠𝛼 is the Schur polynomial of 𝛼 = (𝛼0, . . . , 𝛼𝑛). ⊓⊔

With Theorem 5.14 the previous example can be generalized.

Examples 5.18 (Examples 4.16 and 4.17 continued). Let 𝑛 ∈ N0 and let

−∞ < 𝛼0 < 𝛼1 < · · · < 𝛼𝑛 < ∞

be reals. Then

(a) F = {𝑥𝛼0 , . . . , 𝑥𝛼𝑛 } on X = (0,∞) (Example 4.16) and
(b) G = {𝑒𝛼0𝑥 , . . . , 𝑒𝛼𝑛𝑥} on Y = R (Example 4.17)

are ECT-systems. ◦

Proof. See Problem 5.6. ⊓⊔

In Problem 5.5 we will see that also Example 4.19 are ET- and ECT-systems.

5.5 Representation as a Determinant, Zeros, and Non-Negativity

Similar to Theorem 4.20 we have the following for ET-systems, i.e., knowing 𝑛 zeros
of a polynomial 𝑓 counting multiplicities determines 𝑓 uniquely up to a scalar.

Theorem 5.19. Let 𝑛 ∈ N0 and let F = { 𝑓𝑖}𝑛𝑖=0 ⊆ C𝑛 ( [𝑎, 𝑏],R) be an ET-system.
Let 𝑥1, . . . , 𝑥𝑛 ∈ [𝑎, 𝑏] with

𝑥1 = · · · = 𝑥𝑖1 < 𝑥𝑖1+1 = · · · = 𝑥𝑖1+𝑖2 < . . . < 𝑥𝑖1+···+𝑖𝑘−1+1 = · · · = 𝑥𝑖1+···+𝑖𝑘=𝑛
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for some 𝑘, 𝑖1, . . . , 𝑖𝑘 ∈ N and let 𝑓 ∈ lin F . The following are equivalent:

(i) 𝑓 (𝑙) (𝑥 𝑗 ) = 0 for all 𝑗 = 1, . . . , 𝑘 and 𝑙 = 0, . . . , 𝑖 𝑗 − 1.
(ii) There exists a constant 𝑐 ∈ R such that

𝑓 (𝑥) = 𝑐 · det
(
𝑓0 𝑓1 𝑓2 . . . 𝑓𝑛
𝑥 𝑥1 𝑥2 . . . 𝑥𝑛

)
.

Proof. (ii) ⇒ (i): Clear.
(i) ⇒ (ii): If 𝑓 = 0 then 𝑐 = 0 so the assertion holds. If 𝑓 ≠ 0 then there exists

a point 𝑥0 ∈ X \ {𝑥1, . . . , 𝑥𝑛} such that 𝑓 (𝑥0) ≠ 0 since F is an ET-system. Then
also the determinant in (ii) is non-zero and we can choose 𝑐 such that both 𝑓 and
the scaled determinant coincide also in 𝑥0. Since F is an ET-system we have by
Theorem 5.3 that (

𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)∗
has full rank, i.e., the coefficients of 𝑓 and

𝑐 · det
(
𝑓0 𝑓1 𝑓2 . . . 𝑓𝑛
𝑥 𝑥1 𝑥2 . . . 𝑥𝑛

)
coincide. ⊓⊔

The following result is a strengthened version of Theorem 4.26. It is a small
extension of e.g. [KS66, p. 28, Thm. 5.1] with explicit multiplicities of the zeros of
a non-negative polynomial.

Theorem 5.20. Let 𝑛 ∈ N0 and let F = { 𝑓𝑖}𝑛𝑖=0 be an ET-system on [𝑎, 𝑏] with
𝑎 < 𝑏. Let 𝑥1 < · · · < 𝑥𝑘 in [𝑎, 𝑏] and let 𝑚1, . . . , 𝑚𝑘 ∈ N for some 𝑘 ∈ N. The
following hold:

(a) If𝑚1 + · · · +𝑚𝑘 ≤ 𝑛 and𝑚𝑖 ∈ 2N for all 𝑥𝑖 ∈ (𝑎, 𝑏) then there exists a 𝑓 ∈ lin F
such that

(i) 𝑓 ≥ 0 on [𝑎, 𝑏],
(ii) 𝑓 has precisely the zeros 𝑥1, . . . , 𝑥𝑘 ,

(iii) the zeros 𝑥𝑖 ∈ (𝑎, 𝑏) of 𝑓 have multiplicity 𝑚𝑖 ,
(iv) if 𝑥1 = 𝑎 then 𝑥1 = 𝑎 has multiplicity 𝑚1 or 𝑚1 + 1, and
(v) if 𝑥𝑘 = 𝑏 then 𝑥𝑘 = 𝑏 has multiplicity 𝑚𝑘 or 𝑚𝑘 + 1.

(b) If F is an ECT-system or 𝑚1 + · · · + 𝑚𝑘 = 𝑛 then there exists a 𝑓 ∈ lin F such
that

(i) 𝑓 ≥ 0 on [𝑎, 𝑏],
(ii) 𝑓 has precisely the zeros 𝑥1, . . . , 𝑥𝑘 , and

(iii) the zeros 𝑥𝑖 of 𝑓 have multiplicity exactly 𝑚𝑖 .

Proof. (a): Set 𝑚 := 𝑚1 + · · · +𝑚𝑘 . If all 𝑥1, . . . , 𝑥𝑘 ∈ (𝑎, 𝑏) and 𝑛 = 𝑚 + 𝑝 for some
𝑝 ∈ N0 then the polynomial
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𝑓 (𝑥) = (−1) 𝑝 · det
(
𝑓0 𝑓1 . . . 𝑓𝑝 𝑓𝑝+1 . . . 𝑓𝑝+𝑚1 . . . 𝑓𝑛
𝑥 (𝑎 . . . 𝑎) (𝑥1 . . . 𝑥1) . . . 𝑥𝑘)

)
+ det

(
𝑓0 𝑓1 . . . 𝑓𝑚1 . . . 𝑓𝑚 𝑓𝑚+1 . . . 𝑓𝑛
𝑥 (𝑥1 . . . 𝑥1) . . . 𝑥𝑘) (𝑏 . . . 𝑏)

)
fulfills the requirements. If 𝑥1 = 𝑎 and/or 𝑥𝑘 = 𝑏 then include 𝑥1 = 𝑎with multiplicity
𝑚1 or 𝑚1 + 1 and 𝑥𝑘 = 𝑏 with multiplicity 𝑚𝑘 or 𝑚𝑘 + 1. Use the choice 𝑚1
or 𝑚1 + 1 resp. 𝑚𝑘 or 𝑚𝑘 + 1 to let 𝑝 ∈ 2N0 and add 𝑦 and 𝑧 with 𝑥𝑘−1 <

𝑦 < 𝑧 < 𝑥𝑘 . Once construct a polynomial with the zeros 𝑥1, . . . , 𝑥𝑘 , 𝑦 with the
corresponding multiplicities and add another polynomial with the zeros 𝑥1, . . . , 𝑥𝑘 , 𝑧
with the corresponding multiplicities to it as above.

(b): Use { 𝑓𝑖}𝑚𝑖=0 as the ET-system in (a). ⊓⊔

Problems

5.1 Prove Lemma 5.7.

5.2 Prove Lemma 5.8.

5.3 Prove Lemma 5.9.

5.4 (a) Let 𝑛 ∈ N0 and let F = { 𝑓𝑖}𝑛𝑖=0 be an ET-system on [𝑎, 𝑏] for some 𝑎 < 𝑏.
Show that F on [𝑎′, 𝑏′] with 𝑎 < 𝑎′ < 𝑏′ < 𝑏 is also an ET-system.

(b) Show (a) for ECT-systems.

5.5 Prove that Example 4.19 is an ECT-system.

5.6 Prove that the Examples 5.18 are ECT-systems.

5.7 Let
F := {1, 𝑥2, 𝑥3, 𝑥5, 𝑥8, 𝑥11, 𝑥13, 𝑥42}

on [0,∞). Give an algebraic polynomial 𝑓 ∈ lin F such that

(a) 𝑓 is non-negative on [0,∞),
(b) 𝑓 has 𝑥1 = 1 as a zero with multiplicity 𝑚1 = 2,
(c) 𝑓 has 𝑥2 = 3 as a zero with multiplicity 𝑚2 = 4, and
(d) 𝑓 has no zeros in [0,∞) other than 𝑥1 and 𝑥2.



Chapter 6
Generating ET-Systems from T-Systems by
Using Kernels

Life is a short affair;
we should try to make it smooth, and free from strife.

Euripides: The Suppliant Women [Eur13, p. 175]

We have seen that ET- and especially ECT-systems have much nicer properties than
T-systems. Therefore, especially for technical reasons, it is desirable to smoothen a
T-system into an ET-system. Usually, a function is smoothed by convolution with
e.g. the Gaussian kernel. This procedure is also used for T-systems.

The smoothing of T-systems into ET-systems is used in the proof of the main
theorem, Karlin’s Theorem 7.1. Therein, at first the result is proven for ET-systems
and then in a second step the T-system is smoothened into an ET-systems and a limit
procedure gives then the statement also for the T-system. Readers only interested in
the polynomial cases can skip this chapter, go directly to Chapter 7, and use only
the first part of the proof of Karlin’s Theorem 7.1 since the polynomials are already
ET-systems.

6.1 Kernels

Let X and Y be sets and
𝐾 : X ×Y → R

be a bivariate function, also called kernel. A family { 𝑓𝑖}𝑛𝑖=0 on Y can then be seen
as a special case of 𝐾 with X = {0, 1, . . . , 𝑛}, i.e., 𝑓𝑖 = 𝐾 (𝑖, · ) for all 𝑖 ∈ X. For a
kernel 𝐾 we define the short hand notation

𝐾

(
𝑥0 𝑥1 . . . 𝑥𝑛
𝑦0 𝑦1 . . . 𝑦𝑛

)
:= det(𝐾 (𝑥𝑖 , 𝑦 𝑗 ))𝑛𝑖, 𝑗=0. (6.1)

Definition 6.1. Let 𝑘 ∈ N0, X and Y be ordered sets, and 𝐾 : X × Y → R be a
kernel. The kernel 𝐾 is called totally positive (of order 𝑘), short (TP𝑘) property, if
for all 𝑖 = 0, 1, . . . , 𝑘 we have

𝐾

(
𝑥1 𝑥2 . . . 𝑥𝑖
𝑦1 𝑦2 . . . 𝑦𝑖

)
≥ 0

75
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for all 𝑥1 < 𝑥2 < · · · < 𝑥𝑖 , 𝑦1 < 𝑦2 < · · · < 𝑦𝑖 , and (𝑥𝑙 , 𝑦𝑚) ∈ X × Y for all
𝑙, 𝑚 = 1, . . . , 𝑖. The kernel 𝐾 is called strictly totally positive (of order 𝑘), short
(STP𝑘), if we always have

𝐾

(
𝑥1 𝑥2 . . . 𝑥𝑖
𝑦1 𝑦2 . . . 𝑦𝑖

)
> 0.

For more on sign regular kernels see e.g. [Kar68] and [GM96].

Corollary 6.2 (see e.g. [KS66, p. 10, Exm. 3]). Let 𝑛 ∈ N0, let 𝐾 be a STP𝑛+1
kernel with X = [𝑎, 𝑏], Y = [𝑐, 𝑑] and 𝐾 (𝑥, · ) ∈ C([𝑐, 𝑑],R) for all 𝑥 ∈ X, and
let 𝑥0 < 𝑥1 < · · · < 𝑥𝑛 in X.

Then {𝐾 (𝑥𝑖 , · )}𝑘𝑖=0 is a continuous T-system on Y = [𝑐, 𝑑] for all 𝑘 = 0, . . . , 𝑛.

Proof. Follows immediately from Lemma 4.5. ⊓⊔

Definition 6.3. Let 𝑘 ∈ N, X = [𝑎, 𝑏], Y = [𝑐, 𝑑], and 𝐾 : X×Y → R be a kernel
such that 𝐾 (𝑥, · ) ∈ C𝑘 (Y,R) for all 𝑥 ∈ X. We define

𝐾∗
(
𝑥1 𝑥2 . . . 𝑥𝑘
𝑦1 𝑦2 . . . 𝑦𝑘

)
:= det

(
𝐾 (𝑥1, · ) 𝐾 (𝑥2, · ) . . . 𝐾 (𝑥𝑘 , · )
𝑦1 𝑦2 . . . 𝑦𝑘

)∗
(6.2)

for all 𝑥1 < 𝑥2 < · · · < 𝑥𝑘 in X and 𝑦1 ≤ 𝑦2 ≤ · · · ≤ 𝑦𝑘 in Y.
We say 𝐾 is extended totally positive (of order 𝑘), short ETP𝑘 , if for all 𝑖 =

1, 2, . . . , 𝑘 we have

𝐾∗
(
𝑥1 𝑥2 . . . 𝑥𝑖
𝑦1 𝑦2 . . . 𝑦𝑖

)
> 0

for all 𝑥1 < 𝑥2 < · · · < 𝑥𝑖 in X and 𝑦1 ≤ 𝑦2 ≤ · · · ≤ 𝑦𝑖 in Y.

Corollary 6.4 (see e.g. [KS66, p. 10, Exm. 3]). Let 𝑛 ∈ N0, let 𝐾 be an ETP𝑛+1
kernel with X = [𝑎, 𝑏], Y = [𝑐, 𝑑] and 𝐾 (𝑥, · ) ∈ C𝑛 ( [𝑐, 𝑑],R) for all 𝑥 ∈ X, and
let 𝑥0 < 𝑥1 < · · · < 𝑥𝑛 in X.

Then {𝐾 (𝑥𝑖 , · )}𝑛𝑖=0 is an ECT-system on Y = [𝑐, 𝑑].

Proof. Follows immediately from Theorem 5.3. ⊓⊔

Example 6.5. Let X = R, Y = [𝑎, 𝑏] ⊂ (0,∞), and 𝐾 (𝑥, 𝑦) = 𝑦𝑥 . Then 𝐾 is ETP𝑘
for all 𝑘 ∈ N0. ◦

Proof. Follows immediately from Examples 5.18. ⊓⊔

Example 6.6 (see e.g. [KS66, p. 11, Exm. 5]). For any 𝜎 > 0 the Gaussian kernel

𝐾𝜎 (𝑥, 𝑦) :=
1

√
2𝜋𝜎2

exp
(
−1

2

( 𝑥 − 𝑦
𝜎

)2
)

on X ×Y = R2 (6.3)

is ETP𝑘 for any 𝑘 ∈ N.

The proof is adapted from [KS66, p. 11].
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Proof. It is sufficient to show that 𝐾 (𝑥, 𝑦) = 𝑒−(𝑥−𝑦)2 is ETP𝑘 for all 𝑘 ∈ N0.
In Example 5.18 (b) we have seen that {𝑒𝛼𝑖 𝑥}𝑛

𝑖=0 is an ECT-system on R for all
𝑛 ∈ N0 and all 𝛼0 < 𝛼1 < · · · < 𝛼𝑛 in R. Hence, by writing

𝑓𝑛 (𝑥) :=
𝑛∑︁
𝑖=0

𝑎𝑛 · 𝑒−(𝑥𝑖−𝑥 )2
as 𝑓𝑛 (𝑥) = 𝑒−𝑥

2 ·
𝑛∑︁
𝑖=0

𝑎𝑖 · 𝑒−𝑥
2
𝑖 · 𝑒2𝑥𝑖 𝑥

we see that 𝑓𝑛 has at most 𝑛 zeros (counting multiplicities) in R if 𝑎0, . . . , 𝑎𝑛 ∈ R
with 𝑎2

0 + · · · + 𝑎2
𝑛 > 0. ⊓⊔

6.2 The Basic Composition Formulas

The following equations (6.4) and (6.6) are the basic composition formulas.

Lemma 6.7 (see e.g. [KS66, pp. 13–14, Exm. 8]). Let 𝐾 : [𝑎, 𝑏] × [𝑐, 𝑑] → R and
𝐿 : [𝑐, 𝑑] × [𝑒, 𝑓 ] → R be kernels. Let 𝜇 be a 𝜎-finite measure such that 𝑀 (𝑥, 𝑧)
defined by

𝑀 : [𝑎, 𝑏] × [𝑒, 𝑓 ] → R, 𝑀 (𝑥, 𝑧) :=
∫ 𝑑

𝑐

𝐾 (𝑥, 𝑦) · 𝐿 (𝑦, 𝑧) d𝜇(𝑦)

exists for all (𝑥, 𝑧) ∈ [𝑎, 𝑏] × [𝑒, 𝑓 ]. The following hold:

(i) 𝑀 is a kernel.
(ii) For all 𝑘 ∈ N, 𝑥1 < · · · < 𝑥𝑘 in [𝑎, 𝑏], and 𝑧1 < · · · < 𝑧𝑘 in [𝑒, 𝑓 ] we have

𝑀

(
𝑥1 . . . 𝑥𝑘
𝑧1 . . . 𝑧𝑘

)
=∫

. . .

∫
𝑐≤𝑦1<· · ·<𝑦𝑘≤𝑑

𝐾

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
· 𝐿

(
𝑦1 . . . 𝑦𝑘
𝑧1 . . . 𝑧𝑘

)
d𝜇(𝑦1) . . . d𝜇(𝑦𝑘). (6.4)

(iii) If 𝐿 (𝑦, · ) ∈ C𝑘−1 ( [𝑒, 𝑓 ],R) for some 𝑘 ∈ N and

𝜕𝑖𝑧𝑀 (𝑥, 𝑧) :=
∫ 𝑑

𝑐

𝐾 (𝑥, 𝑦) · 𝜕𝑖𝑧𝐿 (𝑦, 𝑧) d𝜇(𝑦) (6.5)

holds for all 𝑖 = 0, . . . , 𝑘 − 1 then

𝑀∗
(
𝑥1 . . . 𝑥𝑘
𝑧1 . . . 𝑧𝑘

)
=∫

. . .

∫
𝑐≤𝑦1<· · ·<𝑦𝑘≤𝑑

𝐾

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
· 𝐿∗

(
𝑦1 . . . 𝑦𝑘
𝑧1 . . . 𝑧𝑘

)
d𝜇(𝑦1) . . . d𝜇(𝑦𝑘) (6.6)
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for all 𝑥1 < · · · < 𝑥𝑘 in [𝑎, 𝑏], and 𝑧1 ≤ · · · ≤ 𝑧𝑘 in [𝑒, 𝑓 ].

Proof. (i) is clear, (ii) follows by straight forward calculations, see e.g. [PS70, p. 48,
No. 68], and (iii) follows from (ii) with (6.5). ⊓⊔

6.3 Smoothing T-Systems into ET-Systems

With the Gaussian kernel from Example 6.6 we get from Lemma 6.7 the following
smoothing result.

Corollary 6.8 (see e.g. [KS66, p. 15]). Let 𝑛 ∈ N0 and F = { 𝑓𝑖}𝑛𝑖=0 be a continuous
T-system on [𝑎, 𝑏]. For any 𝜎 > 0 let

𝐾𝜎 (𝑥) :=
1

√
2𝜋𝜎2

exp
(
−1

2

( 𝑥
𝜎

)2
)

on X = R

be the Gaussian kernel and define 𝑓𝑖,𝜎 := 𝑓𝑖 ∗ 𝐾𝜎 for all 𝑖 = 0, . . . , 𝑛. Then
F𝜎 := { 𝑓𝑖,𝜎}𝑛𝑖=0 is an ET-system.

Proof. See Problem 6.1. ⊓⊔

If F is a continuous T-system on [𝑎, 𝑏] then

lim
𝜎↘0

𝑓𝑖,𝜎 (𝑥) = 𝑓𝑖 (𝑥)

for all 𝑥 ∈ (𝑎, 𝑏) and 𝑖 = 0, . . . , 𝑛.

Corollary 6.9. If { 𝑓𝑖}𝑘𝑖=0 in Corollary 6.8 is a T-system for all 𝑘 = 0, . . . , 𝑛 then F𝜎
is an ECT-system.

Proof. Apply Corollary 6.8 for every 𝑘 = 0, 1, . . . , 𝑛. ⊓⊔

Approximating a T-system by ET-systems with the Gaussian kernel is often used
[GK02, Sch53, Kar68], see also [KS66, p. 16]. We will need it in the proof of Karlin’s
Theorem 7.1.

Problems

6.1 Prove Corollary 6.8 from Lemma 6.7.
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Chapter 7
Karlin’s Positivstellensatz and
Nichtnegativstellensatz on [𝒂, 𝒃]

Beauty is the first test: there is no permanent place
in this world for ugly mathematics.

Godfrey Harold Hardy [Har69, §10, p. 85]

We now come to the main result (Karlin’s Theorem 7.1) and its variations: Karlin’s
Positivstellensatz 7.3 for T-systems on [𝑎, 𝑏] and Karlin’s Nichtnegativstellensatz 7.6
for ET-systems on [𝑎, 𝑏]. Earlier versions were already developed in [KS53]. Both
results are used in the following chapters to prove Karlin’s Positivstellensatz 8.1 for
T-systems on [0,∞), Karlin’s Nichtnegativstellensatz 8.3 for ET-systems on [0,∞),
Karlin’s Positivstellensatz 8.4 for T-systems on R, and finally Karlin’s Nichtnega-
tivstellensatz 8.5 for ET-systems on R.

The main applications and examples will be the various sparse algebraic Posi-
tivstellensätze and sparse algebraic Nichtnegativstellensätze in Part IV.

7.1 Karlin’s Positivstellensatz for T-Systems on [𝒂, 𝒃]

For the following main result we remind the reader what it means that a set has an
index, see Definition 4.24: If 𝑥 ∈ (𝑎, 𝑏) then its index is 2 and if 𝑥 = 𝑎 or 𝑏 then its
index is 1. The following result is due to Karlin and we name it therefore after him.

Karlin’s Theorem 7.1 (for 𝑓 > 0 on [𝑎, 𝑏]; [Kar63, Thm. 1] or e.g. [KS66, p. 66,
Thm. 10.1]). Let 𝑛 ∈ N0, F = { 𝑓𝑖}𝑛𝑖=0 be a continuous T-system of order 𝑛 on [𝑎, 𝑏]
with 𝑎 < 𝑏, and let 𝑓 ∈ C([𝑎, 𝑏],R) with 𝑓 > 0 on [𝑎, 𝑏] be a strictly positive
continuous function. The following hold:

(i) There exists a unique polynomial 𝑓∗ ∈ lin F such that

(a) 𝑓 (𝑥) ≥ 𝑓∗ (𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏],
(b) 𝑓∗ vanishes on a set with index 𝑛,
(c) the function 𝑓 − 𝑓∗ vanishes at least once between each pair of adjacent

zeros of 𝑓∗,
(d) the function 𝑓 − 𝑓∗ vanishes at least once between the larges zero of 𝑓∗ and

the end point 𝑏, and
(e) 𝑓∗ (𝑏) > 0.

81
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(a) 𝑛 = 5

(b) 𝑛 = 6

Fig. 7.1: The functions 𝑓 ∈ C([𝑎, 𝑏],R) with 𝑓 > 0 (black), 𝑓∗ ∈ lin F (red), and
𝑓 ∗ ∈ lin F (blue) from the Karlin’s Positivstellensatz 7.3 with 𝑛 = 5 and 𝑛 = 6.

(ii) There exists a unique polynomial 𝑓 ∗ ∈ lin F which satisfies the conditions
(a) to (d) of (i) and

(e’) 𝑓 ∗ (𝑏) = 0.

Examples of 𝑓∗ and 𝑓 ∗ are depicted in Figure 7.1 for an odd and an even 𝑛.
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The proof is taken from [KS66, pp. 68–71]. The proof constructs the polynomials
𝑓∗ and 𝑓 ∗ by using the Fixed Point Theorem of Brouwer [Bro11, Satz 4], see also
e.g. [Zei86, Prop. 2.6].1

Proof. We distinguish three different cases.
Case 1: Let 𝑛 = 2𝑚 and let F be an ET-system. We construct 𝑓∗ in (i) as follows.

For each point 𝜉 = (𝜉0, . . . , 𝜉𝑚) in the 𝑚-dimensional simplex

Ξ𝑚 :=

{
(𝜉0, . . . , 𝜉𝑚) ∈ R𝑚+1

����� 𝜉𝑖 ≥ 0, 𝑖 = 0, 1, . . . , 𝑚,
𝑚∑︁
𝑖=0

𝜉𝑖 = 𝑏 − 𝑎
}

(7.1)

set

𝑥𝑖 := 𝑎 +
𝑖−1∑︁
𝑘=0

𝜉𝑘

for all 𝑖 = 0, . . . , 𝑚 and define

𝑓𝜉 (𝑥) := 𝑐 𝜉 · det
(
𝑓0 𝑓1 𝑓2 . . . 𝑓𝑛−1 𝑓𝑛
𝑥 𝑥1 𝑥1 . . . 𝑥𝑚 𝑥𝑚

)
(7.2)

with 𝑐 𝜉 ∈ R such that 𝑓𝜉 =
∑𝑛
𝑖=0 𝑎𝑖 𝑓𝑖 ≥ 0 on [𝑎, 𝑏] with 𝑎2

0 + · · · + 𝑎2
𝑛 = 1. If 𝑝 of

the points 𝑥𝑖 coincide, this common point is to have multiplicity 2𝑝.
Define

𝛿𝑖 (𝜉) := min{𝛿 ≥ 0 | 𝛿 · 𝑓 ≥ 𝑢 𝜉 on [𝑥𝑖 , 𝑥𝑖+1]} (7.3)

for all 𝑖 = 0, . . . , 𝑚 with 𝑥0 = 𝑎 and 𝑥𝑚+1 = 𝑏. The coefficients 𝑎𝑖 (𝜉) are continuous
in 𝜉 and hence the functions 𝛿𝑖 (𝜉) are continuous in 𝜉.

Next, define
𝐹𝑖 (𝜉) := 𝛿𝑖 (𝜉) − min

𝑘
𝛿𝑘 (𝜉) (7.4)

for all 𝑖 = 0, . . . , 𝑚 and set 𝐹𝑚+1 (𝜉) := 𝐹0 (𝜉). If there does not exist a point 𝜉 such
that 𝐹𝑖 (𝜉) = 0 for all 𝑖 = 0, . . . , 𝑚, then

∑𝑚
𝑖=0 𝐹𝑖 (𝜉) > 0 for all 𝜉 ∈ Ξ𝑚. In this event

the continuous mapping

· ′ : Ξ𝑚 → Ξ𝑚, 𝜉 ↦→ 𝜉′ with 𝜉′𝑖 :=
𝐹𝑖+1 (𝜉)∑𝑚
𝑘=0 𝐹𝑘 (𝜉)

· (𝑏 − 𝑎)

for all 𝑖 = 0, . . . , 𝑚 is well-defined. The Fixed Point Theorem of Brouwer affirms the
existence of a point 𝜉∗ ∈ Ξ𝑚 for which

𝜉∗𝑖 :=
𝐹𝑖+1 (𝜉∗)∑𝑚
𝑘=0 𝐹𝑘 (𝜉∗)

· (𝑏 − 𝑎) (7.5)

1 Note that in [Zei86] the work Über Abbildungen von Mannigfaltigkeiten [Bro11] is incorrectly
dated in the references and Proposition 2.6 on p. 52 to the year 1912 while the paper actually
appeared in 1911 in the Mathematische Annalen. However, we also want to point out that Zeidler
gives three proofs of the Fixed Point Theorem of Brouwer, including a constructive one in [Zei86,
pp. 254–255, Problem 6.7e].
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for all 𝑖 = 0, . . . , 𝑚. By (7.4) we have that for any 𝜉 ∈ Ξ𝑚 we have 𝐹𝑖 (𝜉) = 0 for some
𝑖. Suppose 𝐹𝑗 (𝜉∗) = 0 for some fixed 𝑗 = 0, . . . , 𝑚. Then (7.5) implies 𝜉∗

𝑗−1 = 0. By
(7.3) and (7.4) imply 𝐹𝑗−1 (𝜉∗) = 0. Continuing in this way we get 𝐹𝑖 (𝜉∗) = 0 for all
𝑖 = 0, . . . , 𝑗 and since 𝐹𝑚+1 (𝜉) = 𝐹0 (𝜉) we have 𝐹𝑖 (𝜉∗) = 0 for all 𝑖 = 0, . . . , 𝑚. But
this contradicts our assumption

∑𝑚
𝑖=0 𝐹𝑖 (𝜉∗) > 0. Therefore, there exists at least one

point 𝜉∗ ∈ Ξ𝑚 such that 𝛿𝑖 (𝜉∗) = 𝛿 for all 𝑖 = 0, . . . , 𝑚. Since 𝑓𝜉 ≠ 0 it follows that
𝛿 > 0 and hence all 𝑥𝑖 are distinct, i.e.,

𝑎 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑚 = 𝑏.

Hence, 𝑓∗ := 𝛿−1 · 𝑓𝜉 ∗ by the nature of its construction fulfills the requirements
(a) – (e) of (i).

For 𝑓 ∗ we let 𝑥0 = 𝑎 and 𝑥𝑚 = 𝑏 and we define similar to (7.2) the polynomial

𝑔𝜉 (𝑥) := 𝑑𝜉 · det
(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓𝑛−2 𝑓𝑛−1 𝑓𝑛
𝑥 𝑎 𝑥1 𝑥1 . . . 𝑥𝑚−1 𝑥𝑚−1 𝑏

)
.

Repeating the arguments from above we get 𝑓 ∗ which fulfills (a) – (d) and (e’) in (ii).
Case 2: Let 𝑛 = 2𝑚 + 1 and let F be an ET-system. Similar to case 1, we define

the polynomials

𝑓𝜉 (𝑥) := 𝑑𝜉 · det
(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓𝑛−1 𝑓𝑛
𝑥 𝑎 𝑥1 𝑥1 . . . 𝑥𝑚 𝑥𝑚

)
.

and
𝑔𝜉 (𝑥) := 𝑑𝜉 · det

(
𝑓0 𝑓1 𝑓2 . . . 𝑓𝑛−2 𝑓𝑛−1 𝑓𝑛
𝑥 𝑥1 𝑥1 . . . 𝑥𝑚 𝑥𝑚 𝑏

)
.

Repeating the procedure of case 1 gives the statement.
Case 3: Let 𝑛 = 2𝑚 and F be a T-systems. Then we consider the functions

𝑓𝑖 (𝑥;𝜎) :=
∫ 𝑏

𝑎

𝐾𝜎 (𝑥, 𝑦) · 𝑓𝑖 (𝑦) d𝑦

where
𝐾𝜎 (𝑥, 𝑦) :=

1
𝜎 ·

√
2𝜋

exp
[
−1

2

( 𝑥 − 𝑦
𝜎

)2
]

with 𝜎 > 0, see Chapter 6. By Corollary 6.8 we have that F𝜎 := { 𝑓𝑖 ( · ;𝜎)}𝑛𝑖=0 is an
ET-system on [𝑎, 𝑏] and hence also on any subinterval [𝑎′, 𝑏′] with 𝑎 < 𝑎′ < 𝑏′ < 𝑏.
The need to restrict the system F𝜎 to the proper interval [𝑎′, 𝑏′] is due to the
annoyance that at the end points 𝑥 = 𝑎 and 𝑥 = 𝑏 we have

lim
𝜎↘0

𝑓𝑖 (𝑥;𝜎) = 1
2
𝑓𝑖 (𝑥)

for all 𝑖 = 0, . . . , 𝑛 while for 𝑥 ∈ (𝑎, 𝑏) we have
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lim
𝜎↘0

𝑓𝑖 (𝑥;𝜎) = 𝑓𝑖 (𝑥).

From the cases 1 and 2 we find that for any 𝜎 > 0 we have a polynomial 𝑓∗,𝜎
satisfying conditions (a) – (e) of (i) on the interval [𝑎′, 𝑏′]. If

𝑓∗,𝜎 =

𝑛∑︁
𝑖=0

𝑎𝑖 (𝜎) · 𝑓𝑖 ( · , 𝜎)

we can chose a sequence 𝜎𝑘 ↘ 0 and let 𝑥 (𝑘 )1 , . . . , 𝑥
(𝑘 )
𝑚 be the zeros of 𝑓∗,𝜎𝑘

.
Additionally, let 𝑦 (𝑘 )1 , . . . , 𝑦

(𝑘 )
𝑚+1 be the points which interlace with {𝑥 (𝑘 )

𝑖
}𝑚
𝑖=0, i.e.,

𝑎′ < 𝑦
(𝑘 )
1 < 𝑥

(𝑘 )
1 < · · · < 𝑥

(𝑘 )
𝑚 < 𝑦

(𝑘 )
𝑚+1 ≤ 𝑏′ and satisfying 𝑓 (𝑦 (𝑘 )

𝑖
) = 𝑓∗,𝜎𝑘

(𝑦 (𝑘 )
𝑖

)
for all 𝑖 = 0, . . . , 𝑚 + 1.

Since 𝑓 (𝑥) ≥ 𝑓∗,𝜎 ≥ 0 on [𝑎′, 𝑏′] and solving the system of equations

𝑓∗,𝜎 (𝑥 𝑗 ) =
𝑛∑︁
𝑖=0

𝑎𝑖 (𝜎) · 𝑓𝑖 (𝑥 𝑗 ;𝜎)

for 𝑖 = 0, . . . , 𝑛 we find that these quantities are uniformly bounded. We now select
a subsequence {𝜎𝑘′ } from {𝜎𝑘} with the property that as 𝑘 ′ → ∞ we obtain

𝑎𝑖 (𝜎𝑘′ ) → 𝑎𝑖 for all 𝑖 = 0, . . . , 𝑛,

𝑦
(𝑘′ )
𝑗

→ 𝑦 𝑗 for all 𝑗 = 1, . . . , 𝑚 + 1,

𝑥
(𝑘′ )
𝑙

→ 𝑥𝑙 for all 𝑙 = 1, . . . , 𝑚

and
𝑎′ ≤ 𝑦1 ≤ 𝑥1 ≤ · · · ≤ 𝑥𝑚 ≤ 𝑦𝑚+1 ≤ 𝑏′.

The function 𝑓∗,𝑎′ ,𝑏′ :=
∑𝑛
𝑖=0 𝑎𝑖 · 𝑓𝑖 vanishes at all 𝑥𝑙 , 𝑙 = 1, . . . , 𝑚, and equals 𝑓

at all 𝑦 𝑗 , 𝑗 = 1, . . . , 𝑚 + 1. Therefore, since 𝑓∗,𝑎′ ,𝑏′ is continuous we see that

𝑎′ ≤ 𝑦1 < 𝑥1 < · · · < 𝑥𝑚 < 𝑦𝑚+1 ≤ 𝑏′.

Hence, 𝑓∗,𝑎′ ,𝑏′ satisfies (a) – (e) of (i) on the interval [𝑎′, 𝑏′].
Performing a last limiting procedure letting 𝑎′ ↘ 𝑎 and 𝑏′ ↗ 𝑏 we obtain a

polynomial 𝑓∗ satisfying (a) – (e) in (i) on the full interval [𝑎, 𝑏].
For 𝑓 ∗ the same procedure gives the desired polynomial satisfying the conditions

(a) – (d) and (e’).
Uniqueness of 𝑓∗ and 𝑓 ∗: Let 𝑛 = 2𝑚. Observe that if another polynomial 𝑓∗

with properties (a) – (e) exists then it must have 𝑚 interior zeros 𝑥1, . . . , 𝑥𝑚. Denote
by 𝑥1, . . . , 𝑥𝑚 the zeros of 𝑓∗. Without loss of generality we can assume that either
𝑥1 < 𝑥1 or 𝑥1 = 𝑥1 and 𝑓∗− 𝑓∗ is non-negative in some interval (𝑥1−𝜀, 𝑥1). Otherwise
we interchange the roles of 𝑓∗ and 𝑓∗. We count the zeros of 𝑔 := 𝑓∗ − 𝑓∗. We say 𝑔
has a zero in the closed interval [𝑐, 𝑑] if

• 𝑔(𝑡0) = 0 for 𝑡0 ∈ (𝑐, 𝑑),
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• 𝑔(𝑐) = 0 and 𝑔 ≥ 0 on (𝑐, 𝑐 + 𝜀), or
• 𝑔(𝑑) = 0 and 𝑔 ≥ 0 on (𝑑 − 𝜀, 𝑑).

Counting zeros in this fashion we see that 𝑔 has at least two zeros in each of the
intervals [𝑥𝑖−1, 𝑥𝑖] for 𝑖 = 1, . . . , 𝑚 where 𝑥0 = 𝑎 and at least one in the interval
[𝑥𝑚, 𝑏]. In total 𝑔 vanishes at least 𝑛 + 1 times. Notice, that certain non-nodal zeros
of 𝑔 have been counted twice and hence by Theorem 4.22 we have 𝑔 = 0.

In a similar way we get uniqueness of 𝑓 ∗ and also in the case 𝑛 = 2𝑚 + 1. ⊓⊔

Note, in the previous result we do not need to have 𝑓 ∈ lin F . The function 𝑓

only needs to be continuous and strictly positive on [𝑎, 𝑏].
An earlier version of (or at least connected to) Karlin’s Theorem 7.1 combined

with Theorem 4.22 (which was used in the proof of Karlin’s Theorem 7.1) is a lemma
by Markov [Mar84], see also [ST43, p. 80].

Lemma 7.2 ([Mar84], see also [ST43, p. 80]). Let 𝑚 ∈ N and let 𝑓 ∈
C𝑛+1 ( [𝑎, 𝑏],R) be such that 𝑓 > 0 and 𝑓 (𝑘 ) ≥ 0 for all 𝑘 = 1, . . . , 𝑚 + 1 in
[𝑎, 𝑏]. Let 𝑝𝑚 ∈ R[𝑥]≤𝑚 and 𝑐 ∈ (𝑎, 𝑏). Let 𝑚1 ∈ N be the number of zeros in
(𝑎, 𝑐) of the function 𝑓 − 𝑝𝑚 and 𝑚2 be the number of zeros of 𝑝𝑚 in (𝑐, 𝑏), both
counted with multiplicity. Then 𝑚1 + 𝑚2 ≤ 𝑚 + 1.

Karlin’s Theorem 7.1 is of course much more general. As a consequence of
Karlin’s Theorem 7.1 we get Karlin’s Positivstellensatz for T-systems on [𝑎, 𝑏].

Karlin’s Positivstellensatz 7.3 (for T-Systems on [𝑎, 𝑏]; see [Kar63, Cor. 1] or e.g.
[KS66, p. 71, Cor. 10.1(a)]). Let 𝑛 ∈ N0, let F be a continuous T-system of order
𝑛 on [𝑎, 𝑏] with 𝑎 < 𝑏, and let 𝑓 ∈ lin F with 𝑓 > 0 on [𝑎, 𝑏]. Then there exists a
unique representation

𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F such that

(i) 𝑓∗, 𝑓 ∗ ≥ 0 on [𝑎, 𝑏],
(ii) the zeros of 𝑓∗ and 𝑓 ∗ each are sets of index 𝑛,

(iii) the zeros of 𝑓∗ and 𝑓 ∗ strictly interlace,
(iv) 𝑓∗ (𝑏) = 𝑓 (𝑏) > 0, and
(v) 𝑓 ∗ (𝑏) = 0.

Proof. Let 𝑓∗ be the unique 𝑓∗ from Karlin’s Theorem 7.1(i). Then 𝑓 − 𝑓∗ ∈ lin F is
a polynomial and fulfills (a) – (d), and (e’) of 𝑓 ∗ in Karlin’s Theorem 7.1. But since
also 𝑓 ∗ is unique we have 𝑓 − 𝑓∗ = 𝑓 ∗. ⊓⊔

7.2 The Snake Theorem: An Interlacing Theorem

In Karlin’s Theorem 7.1 a polynomial 𝑓∗ ∈ lin F was found with 0 ≤ 𝑓∗ ≤ 𝑓 for
some given 𝑓 ∈ C([𝑎, 𝑏],R) with 𝑓 > 0 on [𝑎, 𝑏]. This can be extended to find
a function 𝑓∗ ∈ lin F between some 𝑔1, 𝑔2 ∈ C([𝑎, 𝑏],R) as the following result
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shows. In [KS66, p. 368, Thm. 6.1] M. G. Krein and A. A. Nudel’man called it the
Snake Theorem which is an accurate description of its graphical representation, see
Figure 7.2.

Snake Theorem 7.4 ([Kar63, Thm. 2] or e.g. [KS66, p. 72, Thm. 10.2] and [KN77,
p. 368, Thm. 6.1]). Let 𝑛 ∈ N0, F = { 𝑓𝑖}𝑛𝑖=0 be a continuous T-system of order 𝑛
on [𝑎, 𝑏] with 𝑎 < 𝑏, and let 𝑔1, 𝑔2 ∈ C([𝑎, 𝑏],R) be two continuous functions on
[𝑎, 𝑏] such that there exists a function 𝑔 ∈ lin F with

𝑔1 < 𝑔 < 𝑔2

on [𝑎, 𝑏]. Then the following hold:

(i) There exists a unique polynomial 𝑓∗ ∈ lin F such that

(a) 𝑔1 (𝑥) ≤ 𝑓∗ (𝑥) ≤ 𝑔2 (𝑥) for all 𝑥 ∈ [𝑎, 𝑏], and
(b) there exist 𝑛 + 1 points 𝑥1 < · · · < 𝑥𝑛+1 in [𝑎, 𝑏] such that

𝑓∗ (𝑥𝑛+1−𝑖) =
{
𝑔1 (𝑥𝑛+1−𝑖) for 𝑖 = 1, 3, 5, . . . ,
𝑔2 (𝑥𝑛+1−𝑖) for 𝑖 = 0, 2, 4, . . . .

(ii) There exists a unique polynomial 𝑓 ∗ ∈ lin F such that

(a’) 𝑔1 (𝑥) ≤ 𝑓 ∗ (𝑥) ≤ 𝑔2 (𝑥) for all 𝑥 ∈ [𝑎, 𝑏], and
(b’) there exist 𝑛 + 1 points 𝑦1 < · · · < 𝑦𝑛+1 in [𝑎, 𝑏] such that

𝑓 ∗ (𝑦𝑛+1−𝑖) =
{
𝑔2 (𝑦𝑛+1−𝑖) for 𝑖 = 1, 3, 5, . . . ,
𝑔1 (𝑦𝑛+1−𝑖) for 𝑖 = 0, 2, 4, . . . .

The functions 𝑔1, 𝑔2, 𝑔, 𝑓∗, and 𝑓 ∗ of the Snake Theorem 7.4 are illustrated in
Figure 7.2. The following proof is taken from [KS66, p. 73].

Proof. Let 𝑛 = 2𝑚 and F be an ET-system. We proceed as in the proof of Karlin’s
Theorem 7.1. For each 𝜉 = (𝜉0, . . . , 𝜉𝑛) ∈ Ξ𝑛 and

∑𝑛
𝑖=0 𝜉𝑖 = 𝑏 − 𝑎 we construct the

polynomial

𝑓𝜉 (𝑥) =
𝑛∑︁
𝑖=0

𝑎𝑖 (𝜉) · 𝑓𝑖 (𝑥) = 𝑐 𝜉 · det
(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥 𝑥1 . . . 𝑥𝑛

)
which vanishes at each of the points

𝑥𝑖 := 𝑎 +
𝑖−1∑︁
𝑘=0

𝜉𝑘

for all 𝑖 = 0, . . . , 𝑛 and let 𝑐 𝜉 ∈ R be such that 𝑎0 (𝜉)2 + · · · + 𝑎𝑛 (𝜉)2 = 1 and 𝑓𝜉 ≥ 0
on [𝑥𝑖 , 𝑥𝑖+1] if 𝑖 is even.

For 𝑖 = 0, 2, 4, . . . , 𝑛 we define
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Fig. 7.2: The functions 𝑔1, 𝑔2 ∈ C([𝑎, 𝑏],R) (black, 𝑔1 bottom, 𝑔2 top), 𝑔 ∈ lin F
(blue, dashed), 𝑓∗ ∈ lin F (red), and 𝑓 ∗ ∈ lin F (green) from the Snake Theorem 7.4.

𝛿𝑖 (𝜉) := min
{
𝛿 ≥ 0

�� 𝛿 · (𝑔2 − 𝑔) ≥ 𝑓𝜉 on [𝑥𝑖 , 𝑥𝑖+1]
}
,

where 𝑥0 = 𝑎 and 𝑥𝑛+1 = 𝑏, while for 𝑖 = 1, 3, . . . , 𝑛 − 1 we define

𝛿𝑖 (𝜉) := min
{
𝛿 ≥ 0

�� 𝑓𝜉 ≥ 𝛿 · (𝑔 − 𝑔1) on [𝑥𝑖 , 𝑥𝑖+1]
}
.

As in Karlin’s Theorem 7.1 we define 𝐹𝑘 (𝜉) := 𝛿𝑘 (𝜉) − min𝑖 𝛿𝑖 (𝜉). And as before
assuming

∑𝑛
𝑘=0 𝐹𝑘 (𝜉) > 0 for all 𝜉 ∈ Ξ𝑛 leads to a contradiction. Therefore, there

exists a 𝜉∗ ∈ Ξ𝑛 for which 𝛿𝑖 (𝜉∗) = 𝛿 for all 𝑖 = 0, . . . , 𝑛. It is clear that 𝛿 > 0 and
that the polynomial 𝑓∗ := 𝛿−1 · 𝑓𝜉 ∗ + 𝑔 satisfies the conditions of the theorem.

The polynomial 𝑓 ∗ is constructed employing the same line of arguments.
The extension encompassing the case where F is merely a T-system and the proof

of the uniqueness proceed as in the proof of Karlin’s Theorem 7.1. ⊓⊔

7.3 Karlin’s Nichtnegativstellensatz for ET-Systems on [𝒂, 𝒃]

While Karlin’s Theorem 7.1 with 𝑓 > 0 can be proved for T-systems, an equivalent
version allowing zeros in 𝑓 ∈ C([𝑎, 𝑏],R), i.e., 𝑓 ≥ 0 but not 𝑓 > 0, needs to
assume that F is an ET-system.

Karlin’s Theorem 7.5 (for 𝑓 ≥ 0 on [𝑎, 𝑏]; [Kar63, Thm. 3] or e.g. [KS66, p. 74,
Thm. 10.3]). Let 𝑛 ∈ N0, let F = { 𝑓𝑖}𝑛𝑖=0 be a continuous ET-system of order 𝑛 on
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[𝑎, 𝑏] with 𝑎 < 𝑏, and let 𝑓 ∈ C𝑛 ( [𝑎, 𝑏],R) be such that 𝑓 ≥ 0 on [𝑎, 𝑏] and 𝑓 has
𝑟 < 𝑛 zeros (counting multiplicities). The following hold:

(i) There exists a unique polynomial 𝑓∗ ∈ lin F such that

(a) 𝑓 (𝑥) ≥ 𝑓∗ (𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏],
(b) 𝑓∗ has 𝑛 zeros counting multiplicities,
(c) if 𝑥1 < · · · < 𝑥𝑛−𝑟 in (𝑎, 𝑏) are the zeros of 𝑓∗ which remain after removing

the 𝑟 zeros of 𝑓 then 𝑓 − 𝑓∗ vanishes at least twice more (counting multi-
plicities) in each open interval (𝑥𝑖 , 𝑥𝑖+1), 𝑖 = 1, . . . , 𝑛 − 𝑟 − 1, and at least
once more in each of the intervals [𝑎, 𝑥1) and (𝑥𝑛−𝑟 , 𝑏],

(d) the zeros 𝑥1, . . . , 𝑥𝑛−𝑟 of (c) are a set of index 𝑛 − 𝑟, and
(e) 𝑥𝑛−𝑟 < 𝑏.

(ii) There exists a unique polynomial 𝑓 ∗ ∈ lin F which satisfies the conditions (a)
to (d) and

(e’) 𝑥𝑛−𝑟 = 𝑏.

The proof is taken from [KS66, pp. 74–75].

Proof. Let 𝑧1, . . . , 𝑧𝑝 be the distinct zeros of 𝑓 with multiplicities𝑚1, . . . , 𝑚𝑝 where∑𝑝

𝑖=1 𝑚𝑖 = 𝑟 ≤ 𝑛 − 1 and set 𝑛′ := 𝑛 − 𝑟 . The proof is now similar to the proof of
Karlin’s Theorem 7.1 where 𝑛 is replaced by 𝑛′. Since the odd and the even cases
are again somewhat the same and for the sake of some slight variety we treat now
the odd case 𝑛′ = 2𝑚′ + 1. The construction of 𝑓∗ in part (i) proceeds as follows. For
each 𝜉 ∈ Ξ𝑚

′ we construct the polynomial

𝑓𝜉 (𝑥) :=
𝑛∑︁
𝑖=0

𝑎𝑖 (𝜉) · 𝑓𝑖

= 𝑐 𝜉 · det
(
𝑓0 𝑓1 . . . 𝑓𝑚1 . . . 𝑓𝑚1+𝑚𝑝−1+1 . . . 𝑓𝑟 𝑓𝑟+1 𝑓𝑟+2 . . . 𝑓𝑛−2 𝑓𝑛−1 𝑓𝑛
𝑥 𝑧1 . . . 𝑧1 . . . 𝑧𝑝 . . . 𝑧𝑝 𝑥1 𝑥1 . . . 𝑥𝑛′ 𝑥𝑛′ 𝑎

)
(7.6)

where 𝑐 𝜉 ∈ R is chosen such that 𝑎1 (𝜉)2 + · · · + 𝑎𝑛 (𝜉)2 = 1 and

𝑥𝑖 := 𝑎 +
𝑖∑︁
𝑘=0

𝜉𝑘

for all 𝑖 = 1, . . . , 𝑚′ are the zeros of multiplicity two and 𝑎 is a zero of multiplicity
one. Now we define

𝛿𝑖 (𝜉) := min
{
𝛿 ≥ 0

���� 𝛿 ≥
𝑓𝜉

𝑓
on [𝑥𝑖 , 𝑥𝑖+1]

}
for 𝑖 = 1, . . . , 𝑚′ + 1 with 𝑥𝑚′+2 = 𝑏 where the ratio is evaluated by l’Hopital’s rule
at the zeros 𝑧1, . . . , 𝑧𝑝 of 𝑓 .
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By examining 𝑓𝜉

𝑓
first in the neighborhood of each of the points 𝑧1, . . . , 𝑧𝑝 and

then over the remaining part we find that if 𝜉 (𝑘 ) → 𝜉 then

𝑓𝜉 (𝑘)

𝑓
→

𝑓𝜉

𝑓

uniformly on [𝑎, 𝑏]. Consequently, each of th 𝛿𝑖 is continuous in 𝜉 and 𝛿𝑖 (𝜉) = 0 if
and only 𝜉𝑖 = 0.

The same arguments used in the proof of Karlin’s Theorem 7.1 now show that
for some 𝜉∗ ∈ intΞ𝑚′ we have 𝛿𝑖 (𝜉∗) = 𝛿 > 0 for all 𝑖 = 1, . . . , 𝑚′ + 1. It is simple
to see that 𝑓∗ := 𝛿−1 · 𝑓𝜉 ∗ possesses the properties (a), (b), (d), and (e) in (i). To
show property (c) observe that if 𝑥𝑖 = 𝑧 𝑗 for some 𝑗 then 𝑓𝜉 ∗ has a zero at 𝑧 𝑗 with
multiplicity exceeding that of 𝑓 so that 𝛿 is strictly greater than 𝑓𝜉 ∗ · 𝑓 −1 in some
neighborhood of 𝑧 𝑗 . This implies the equality 𝛿 = 𝑓𝜉 ∗ (𝑥) · 𝑓 (𝑥)−1 for some 𝑥 in
each of the open intervals (𝑥1, 𝑥2), . . . , (𝑥𝑚′ , 𝑥𝑚′+1) and somewhere in (𝑥𝑚′+1, 𝑏].
Thus, in each (𝑥𝑖 , 𝑥𝑖+1), either 𝑓 (𝑥) − 𝛿−1 · 𝑓𝜉 ∗ (𝑥) vanishes somewhere other than at
the zeros of 𝑓 or the multiplicity of one of the common zeros of 𝑓 and 𝛿−1 · 𝑓𝜉 ∗ is
increased by two. In the interval (𝑥𝑚′+1, 𝑏] the function 𝑓 − 𝛿−1 · 𝑓𝜉 may vanish at
𝑏 with multiplicity only one greater than the zero of 𝑓 at this point. This concludes
that 𝑓∗ also fulfills (c) in (i).

The polynomial 𝑓 ∗ when 𝑛′ = 2𝑚′ + 1 is constructed in the same manner by
replacing 𝑎 in (7.6) by 𝑏.

Uniqueness: Assume another polynomial 𝑔 satisfies the same properties as 𝑓∗.
Without loss of generality we can assume that the first zero of 𝑓 − 𝑔 other than the
zeros of 𝑓 is less than or equal to first zero of 𝑓 − 𝑓∗. Define ℎ := 𝑓∗−𝑔

𝑓
. A zero of

ℎ occurring at one of the values 𝑥𝑖 , 𝑖 = 2, . . . , 𝑛′ + 1 is necessarily at least a double
zero. In this case we assign one zero to each of the intervals [𝑥𝑖−1, 𝑥𝑖] and [𝑥𝑖 , 𝑥𝑖+1]
with 𝑥𝑚′+2 = 𝑏. Under this counting procedure, and taking account of the oscillation
properties of 𝑓∗ and 𝑔, we deduce that ℎ has at least three zeros in [𝑎, 𝑥1], at least
two zeros in each of the intervals [𝑥𝑖 , 𝑥𝑖+1], 𝑖 = 2, . . . , 𝑚′, and at least one zero in
[𝑥𝑚′+1, 𝑏]. Clearly, all of these zeros are other than the 𝑟 zeros of 𝑓 , so that 𝑓∗ − 𝑔
has at least 3+2(𝑚′ −1) +1+ 𝑟 = 𝑛+1 zeros (counting multiplicities). Hence, ℎ = 0
and 𝑓∗ = 𝑔. ⊓⊔

If 𝑓 ∈ lin F in Karlin’s Theorem 7.5 we get similar to Karlin’s Positivstellen-
satz 7.3 the following Nichtnegativstellensatz on [𝑎, 𝑏] due to Karlin.

Karlin’s Nichtnegativstellensatz 7.6 (for ET-Systems on [𝑎, 𝑏]; [Kar63, p. 603,
Cor. after Thm. 3] or e.g. [KS66, p. 76, Cor. 10.3]). Let 𝑛 ∈ N0, F = { 𝑓𝑖}𝑛𝑖=0 be an
ET-system of order 𝑛 on [𝑎, 𝑏] with 𝑎 < 𝑏, and let 𝑓 ∈ lin F be such that 𝑓 ≥ 0 on
[𝑎, 𝑏] and 𝑓 has 𝑟 < 𝑛 zeros 𝑎 ≤ 𝑧1 ≤ 𝑧2 ≤ · · · ≤ 𝑧𝑟 ≤ 𝑏 (counting multiplicities).
Then there exists a unique representation

𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F such that
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(i) 𝑓∗, 𝑓 ∗ ≥ 0 on [𝑎, 𝑏],
(ii) for 𝑓∗ and 𝑓 ∗ the sets of zeros counting algebraic multiplicities is after removing

the zeros of 𝑓 with algebraic multiplicity a set of index 𝑛 − 𝑟 which strictly
interlace, and

(iii) the set of zeros of 𝑓 ∗ contains after removing the zeros of 𝑓 with algebraic
multiplicities the point 𝑏.

Proof. Let 𝑓∗ be the polynomial from Karlin’s Theorem 7.5 and set 𝑔 := 𝑓 − 𝑓∗.
Then 𝑔 fulfills the conditions of 𝑓 ∗ in Karlin’s Theorem 7.5 and by its uniqueness
we have 𝑔 = 𝑓 ∗ which proves the statement. ⊓⊔

Remark 7.7. Since Karlin’s Nichtnegativstellensatz 7.6 (ii) might be a little bit
confusing we explain it more detailed.

Let F be an ET-system of order 𝑛 ∈ N0 on [𝑎, 𝑏] with 𝑎 < 𝑏 and let 𝑓 ∈ lin F be
such that 𝑓 ≥ 0 on [𝑎, 𝑏] and 𝑓 has the zeros 𝑧1, . . . , 𝑧𝑙 with algebraic multiplicities
𝑚1, . . . , 𝑚𝑙 , 𝑚1 + · · · + 𝑚𝑙 =: 𝑟 < 𝑛.

(i) If 𝑛 − 𝑟 = 2𝑚 is even then the zeros of 𝑓∗ from Karlin’s Nichtnegativstellen-
satz 7.6 are 𝑥1, . . . , 𝑥𝑚 all with algebraic multiplicity 2 and the zeros of 𝑓 ∗ are
𝑦0, 𝑦1, . . . , 𝑦𝑚 where 𝑦0 and 𝑦𝑚 have algebraic multiplicity 1 and otherwise
the 𝑦𝑖 have algebraic multiplicity 2. They interlace, i.e., we have

𝑎 = 𝑦0 < 𝑥1 < 𝑦1 < · · · < 𝑥𝑚 < 𝑦𝑚 = 𝑏.

The 𝑓∗ and 𝑓 ∗ are then given by

𝑓∗ (𝑥) = 𝑐∗ · det
(
𝑓0 𝑓1 𝑓2 . . . 𝑓2𝑚−1 𝑓2𝑚 𝑓2𝑚+1 . . . 𝑓𝑛
𝑥 𝑥1 𝑥1 . . . 𝑥𝑚 𝑥𝑚 𝑧1 . . . 𝑧𝑙

)
and

𝑓 ∗ (𝑥) = 𝑐∗ · det
(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓2𝑚−2 𝑓2𝑚−1 𝑓2𝑚 𝑓2𝑚+1 . . . 𝑓𝑛
𝑥 𝑎 𝑦1 𝑦1 . . . 𝑦𝑚−1 𝑦𝑚−1 𝑏 𝑧1 . . . 𝑧𝑙

)
where 𝑐∗, 𝑐∗ ∈ R \ {0} and the signs are such that 𝑓∗, 𝑓 ∗ ≥ 0 on [𝑎, 𝑏]. The
zeros 𝑧1, . . . , 𝑧𝑙 are included with their corresponding algebraic multiplicities
𝑚1, . . . , 𝑚𝑙 , i.e., 𝑧1 is included 𝑚1-times, . . . , 𝑧𝑙 is included 𝑚𝑙-times.

(ii) If 𝑛 − 𝑟 = 2𝑚 + 1 is odd then the zeros of 𝑓∗ from Karlin’s Nichtnegativstellen-
satz 7.6 are 𝑥0, . . . , 𝑥𝑚 where 𝑥0 has algebraic multiplicity 1 and the other alge-
braic multiplicity 2. For 𝑓 ∗ we have the zeros 𝑦0, . . . , 𝑦𝑚 where 𝑦0, . . . , 𝑦𝑚−1
have algebraic multiplicity 2 and 𝑦𝑚 has algebraic multiplicity 1. They interlace,
i.e., we have

𝑥0 = 𝑎 < 𝑦0 < · · · < 𝑥𝑚 < 𝑦𝑚 = 𝑏.

The 𝑓∗ and 𝑓 ∗ are then given by

𝑓∗ (𝑥) = 𝑐∗ · det
(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓2𝑚 𝑓2𝑚+1 𝑓2𝑚+2 . . . 𝑓𝑛
𝑥 𝑎 𝑥1 𝑥1 . . . 𝑥𝑚 𝑥𝑚 𝑧1 . . . 𝑧𝑙

)
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and

𝑓 ∗ (𝑥) = 𝑐∗ · det
(
𝑓0 𝑓1 𝑓2 . . . 𝑓2𝑚−1 𝑓2𝑚 𝑓2𝑚+1 𝑓2𝑚+2 . . . 𝑓𝑛
𝑥 𝑦0 𝑦0 . . . 𝑦𝑚−1 𝑦𝑚−1 𝑏 𝑧1 . . . 𝑧𝑙

)
where 𝑐∗, 𝑐∗ ∈ R \ {0} and the signs are such that 𝑓∗, 𝑓 ∗ ≥ 0 on [𝑎, 𝑏]. The
zeros 𝑧1, . . . , 𝑧𝑙 are included with their corresponding algebraic multiplicities
𝑚1, . . . , 𝑚𝑙 , i.e., 𝑧1 is included 𝑚1-times, . . . , 𝑧𝑙 is included 𝑚𝑙-times. ◦

With the proof of Karlin’s Theorem 7.5 one can prove a similar interlacing theorem
as the Snake Theorem 7.4 when 𝑔2 − 𝑔1 has a certain number of zeros, see [KS66,
p. 76, Rem. 10.1].

We stated here Karlin’s Positivstellensatz 7.3 and Karlin’s Nichtnegativstellen-
satz 7.6 for functions on [𝑎, 𝑏]. There are also similar statements for periodic func-
tions, see [Kar63, Thm. 6 and 7]. The cases on [0,∞) and R are given in the next
chapter.

Problems

7.1 Examine the proof of Karlin’s Theorem 7.5 more closely. In the statement of the
theorem it is required that F is an ET-system on [𝑎, 𝑏]. But for a given 𝑓 ≥ 0 where
does the family F actually only needs to be an ET-system?



Chapter 8
Karlin’s Positivstellensätze and
Nichtnegativstellensätze on [0,∞) and R

Look at the conclusion! And try to think of a familiar
theorem having the same or a similar conclusion.

George Pólya [Pól45, p. 25]

In this chapter we extend the results of the previous chapter, i.e., we extend Karlin’s
Positivstellensatz 7.3 on [𝑎, 𝑏] to [0,∞) in Karlin’s Positivstellensatz 8.1 and to
R in Karlin’s Positivstellensatz 8.4 as well as we extend Karlin’s Nichtnegativstel-
lensatz 7.6 on [𝑎, 𝑏] to [0,∞) in Karlin’s Nichtnegativstellensatz 8.3 and to R in
Karlin’s Nichtnegativstellensatz 8.5.

8.1 Karlin’s Positivstellensatz for T-Systems on [0,∞)

By a transformation of [𝑎, 𝑏] to [0,∞] and then restriction to [0,∞) we get from
Karlin’s Positivstellensatz 7.3 the following.

Karlin’s Positivstellensatz 8.1 (for T-Systems on [0,∞); see [Kar63, Thm. 9] or e.g.
[KS66, p. 169, Thm. 8.1]). Let 𝑛 ∈ N0 and F = { 𝑓𝑖}𝑛𝑖=0 be a continuous T-system
of order 𝑛 on [0,∞) such that

(a) there exists a 𝐶 > 0 such that 𝑓𝑛 (𝑥) > 0 for all 𝑥 ≥ 𝐶,

(b) lim
𝑥→∞

𝑓𝑖 (𝑥)
𝑓𝑛 (𝑥)

= 0 for all 𝑖 = 0, . . . , 𝑛 − 1, and

(c) { 𝑓𝑖}𝑛−1
𝑖=0 is a continuous T-system on [0,∞).

Then for any 𝑓 =
∑𝑛
𝑖=0 𝑎𝑖 𝑓𝑖 ∈ lin F with 𝑓 > 0 on [0,∞) and 𝑎𝑛 > 0 there exists a

unique representation
𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F and 𝑓∗, 𝑓 ∗ ≥ 0 on [0,∞) such that the following hold:

(i) If 𝑛 = 2𝑚 the polynomials 𝑓∗ and 𝑓 ∗ each possess 𝑚 distinct zeros {𝑥𝑖}𝑚𝑖=1 and
{𝑦𝑖}𝑚−1

𝑖=0 satisfying

0 = 𝑦0 < 𝑥1 < 𝑦1 < · · · < 𝑦𝑚−1 < 𝑥𝑚 < ∞.

All zeros except 𝑦0 are double zeros.

93
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(ii) If 𝑛 = 2𝑚 + 1 the polynomials 𝑓∗ and 𝑓 ∗ each possess the zeros {𝑥𝑖}𝑚+1
𝑖=1 and

{𝑦𝑖}𝑚𝑖=1 satisfying

0 = 𝑥1 < 𝑦1 < 𝑥2 < · · · < 𝑦𝑚 < 𝑥𝑚+1 < ∞.

All zeros except 𝑥1 are double zeros.
(iii) The coefficient of 𝑓𝑛 in 𝑓∗ is equal to 𝑎𝑛.

The proof is adapted from [KS66, pp. 168].

Proof. By (a) there exists a function 𝑤 ∈ C([0,∞),R) such that 𝑤 > 0 on [0,∞)
and lim𝑥→∞

𝑓𝑛 (𝑥 )
𝑤(𝑥 ) = 1. By (b) we define

𝑣𝑖 (𝑥) :=

{
𝑓𝑖 (𝑥 )
𝑤(𝑥 ) if 𝑥 ∈ [0,∞),
𝛿𝑖,𝑛 if 𝑥 = ∞

for all 𝑖 = 0, 1, . . . , 𝑛. Then by (c) and Corollary 4.9 we have that {𝑣𝑖}𝑛𝑖=0 is a T-system
on [0,∞]. With 𝑡 (𝑥) := tan(𝜋𝑥/2) we define 𝑔𝑖 (𝑥) := 𝑣𝑖 ◦ 𝑡 for all 𝑖 = 0, 1, . . . , 𝑛.
Hence, G = {𝑔𝑖}𝑛𝑖=0 is a T-system on [0, 1] by Corollary 4.8. We now apply Karlin’s
Positivstellensatz 7.3 to G. Set 𝑔 :=

( 𝑓
𝑤

)
◦ 𝑡.

(i): Let 𝑛 = 2𝑚. Then by Karlin’s Positivstellensatz 7.3 there exist points

0 = 𝑦0 < 𝑥1 < 𝑦1 < · · · < 𝑥𝑚 < 𝑦𝑚 = 1

and unique functions 𝑔∗ and 𝑔∗ such that 𝑔 = 𝑔∗ +𝑔∗, 𝑔∗, 𝑔∗ ≥ 0 on [0, 1], 𝑥1, . . . , 𝑥𝑚
are the zeros of 𝑔∗, and 𝑦0, . . . , 𝑦𝑚 are the zeros of 𝑔∗. Then 𝑓∗ := (𝑔∗ ◦ 𝑡−1) · 𝑤 and
𝑓 ∗ := (𝑔∗ ◦ 𝑡−1) · 𝑤 are the unique components in the decomposition 𝑓 = 𝑓∗ + 𝑓 ∗.

(ii): Similar to (i).
(iii): From (i) (and (ii) in a similar way) we have 𝑔𝑖 (1) = 0 for 𝑖 = 0, . . . , 𝑛−1 and

𝑔𝑛 (1) = 1. Hence, we get with 𝑔∗ (𝑦𝑚 = 1) = 0 that 𝑔𝑛 is not contained in 𝑔∗, i.e., 𝑔∗
has the only 𝑔𝑛 contribution because G is linearly independent. This is inherited by
𝑓∗ and 𝑓 ∗ which proves (iii). ⊓⊔

The transformation 𝑔𝑖 = 𝑣𝑖 ◦ 𝑡 with 𝑡 the tan-function is due to Krein [Kre51].
If F in Karlin’s Positivstellensatz 8.1 is an ET-system then the 𝑓∗ and 𝑓 ∗ can be

written down explicitly. For that we only need F to be an ET-system on (0,∞) not
on all [0,∞) since at 𝑥 = 0 a possible zero in 𝑓∗ or 𝑓 ∗ only has multiplicity one.

Corollary 8.2. If in Karlin’s Positivstellensatz 8.1 we have additionally that F is an
ET-system on (0,∞) then the unique 𝑓∗ and 𝑓 ∗ are given

(i) for 𝑛 = 2𝑚 by

𝑓∗ (𝑥) = 𝑐∗ · det
(
𝑓0 𝑓1 𝑓2 . . . 𝑓2𝑚−1 𝑓2𝑚
𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
and
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𝑓 ∗ (𝑥) = −𝑐∗ · det
(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓2𝑚−2 𝑓2𝑚−1
𝑥 𝑦0 (𝑦1 𝑦1) . . . (𝑦𝑚−1 𝑦𝑚−1)

)
,

(ii) and for 𝑛 = 2𝑚 + 1 by

𝑓∗ (𝑥) = −𝑐∗ · det
(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓2𝑚 𝑓2𝑚+1
𝑥 𝑥1 (𝑥2 𝑥2) . . . (𝑥𝑚+1 𝑥𝑚+1)

)
and

𝑓 ∗ (𝑥) = 𝑐∗ · det
(
𝑓0 𝑓1 𝑓2 . . . 𝑓2𝑚−1 𝑓2𝑚
𝑥 (𝑦1 𝑦1) . . . (𝑦𝑚 𝑦𝑚)

)
for some 𝑐∗, 𝑐∗ > 0.

Proof. Combine Karlin’s Positivstellensatz 8.1 with Remark 4.28 and note that since
0 is never a multiple zero we only need F to be an ET-system on (0,∞). ⊓⊔

8.2 Karlin’s Nichtnegativstellensatz for ET-Systems on [0,∞)

In Karlin’s Positivstellensatz 8.1 we needed to transform the domain [𝑎, 𝑏] into
[0,∞] of a T-system. For Karlin’s Nichtnegativstellensatz 8.3 we needed an ET-
system because of the additional zeros from 𝑓 ≥ 0.

With the same technique as in the proof of Karlin’s Positivstellensatz 8.1 and
Lemma 5.8 we get from Karlin’s Nichtnegativstellensatz 7.6 the following.

Karlin’s Nichtnegativstellensatz 8.3 (for ET-Systems on [0,∞)). Let 𝑛 ∈ N0 and
F = { 𝑓𝑖}𝑛𝑖=0 be an ET-system of order 𝑛 on [0,∞) such that

(a) there exists a 𝐶 > 0 such that 𝑓𝑛 (𝑥) > 0 for all 𝑥 ≥ 0,

(b) lim
𝑥→∞

𝑓𝑖 (𝑥)
𝑓𝑛 (𝑥)

= 0 for all 𝑖 = 0, . . . , 𝑛 − 1, and

(c) { 𝑓𝑖}𝑛−1
𝑖=0 is an ET-system.

Then for any 𝑓 =
∑𝑛
𝑖=0 𝑎𝑖 𝑓𝑖 ∈ lin F such that 𝑓 ≥ 0 on [0,∞), 𝑎𝑛 > 0, and 𝑓 has

𝑟 < 𝑛 zeros counting multiplicity there exists a unique representation

𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F such that the following hold:

(i) 𝑓∗, 𝑓 ∗ ≥ 0 on [0,∞),
(ii) 𝑓∗ has 𝑛 zeros (counting multiplicities),

(iii) 𝑓 ∗ has 𝑛 − 1 zeros (counting multiplicities),
(iv) the zeros of 𝑓∗ and 𝑓 ∗ strictly interlace if the zeros of 𝑓 are removed, and
(v) the coefficient of 𝑓𝑛 in 𝑓∗ is equal to 𝑎𝑛.

Proof. The conditions (a) – (c) are such that F on [0,∞], i.e., including ∞, is an
ET-system.
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With the same argument as in the proof of Karlin’s Positivstellensatz 8.1 we
transform F on [0,∞] into G on [0, 1] with the tan-function. Here Lemma 5.8
ensures that also G is an ET-system.

Application of Karlin’s Nichtnegativstellensatz 7.6 on [0, 1] gives the desired
decomposition 𝑔 = 𝑔∗ + 𝑔∗ with the observation that 𝑥 = 1 is a zero of at most
multiplicity one by (a) and (b). Backwards transformation into F on [0,∞] resp.
[0,∞) then gives the assertion. ⊓⊔

8.3 Karlin’s Positivstellensatz for T-Systems on R

We have seen that from Karlin’s Positivstellensatz 7.3 on [𝑎, 𝑏] we get Karlin’s
Positivstellensatz 8.1 on [0,∞) with the transformation 𝑡 (𝑥) = tan(𝜋𝑥/2) from
[0, 1] to [0,∞] and only need to pay attention to the end point 𝑥 = 1 resp. 𝑥 = ∞.
The same transformation however also applies going from [−1, 1] to [−∞,∞] now
paying attention to both end points.

Karlin’s Positivstellensatz 8.4 (for T-Systems on R; see [Kar63, Thm. 10] or e.g.
[KS66, p. 198, Thm. 8.1]). Let 𝑚 ∈ N0 and F = { 𝑓𝑖}2𝑚

𝑖=0 be a continuous T-system
of order 2𝑚 on R such that

(a) there exists a 𝐶 > 0 such that 𝑓2𝑚 (𝑥) > 0 for all 𝑥 ∈ (−∞,−𝐶] ∪ [𝐶,∞),
(b) lim

|𝑥 |→∞

𝑓𝑖 (𝑥)
𝑓2𝑚 (𝑥)

= 0 for all 𝑖 = 0, . . . , 2𝑚 − 1, and

(c) { 𝑓𝑖}2𝑚−1
𝑖=0 is a continuous T-system of order 2𝑚 − 1 on R.

Let 𝑓 =
∑2𝑚
𝑖=0 𝑎𝑖 𝑓𝑖 be such that 𝑓 > 0 on R and 𝑎2𝑚 > 0. Then there exists a unique

representation
𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F and 𝑓∗, 𝑓 ∗ ≥ 0 on R such that

(i) the coefficient of 𝑓2𝑚 in 𝑓∗ is 𝑎2𝑚, and
(ii) 𝑓∗ and 𝑓 ∗ are non-negative polynomials having zeros {𝑥𝑖}𝑚𝑖=1 and {𝑦𝑖}𝑚−1

𝑖=1 with

−∞ < 𝑥1 < 𝑦1 < 𝑥2 < · · · < 𝑦𝑚−1 < 𝑥𝑚 < ∞.

Proof. See Problem 8.1. ⊓⊔

8.4 Karlin’s Nichtnegativstellensatz for ET-Systems on R

On R we have the following Nichtnegativstellensatz for ET-systems.

Karlin’s Nichtnegativstellensatz 8.5 (for ET-Systems on R). Let 𝑚 ∈ N0 and
F = { 𝑓𝑖}2𝑚

𝑖=0 be an ET-system of order 2𝑚 on R such that
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(a) there exists a 𝐶 > 0 such that 𝑓2𝑚 > 0 for all 𝑥 ∈ (−∞,−𝐶] ∪ [𝐶,∞),
(b) lim

|𝑥 |→∞

𝑓𝑖 (𝑥)
𝑓2𝑚 (𝑥)

= 0 for all 𝑖 = 0, . . . , 2𝑚 − 1,

(c) { 𝑓𝑖}𝑛−1
𝑖=0 is an ET-system of order 𝑛 − 1 on R.

Let 𝑓 =
∑2𝑚
𝑖=0 𝑎𝑖 𝑓𝑖 ∈ lin F be such that 𝑓 ≥ 0, 𝑎2𝑚 > 0, and 𝑓 has 𝑟 < 𝑛 zeros

counting multiplicities. Then there exists a unique representation

𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F such that the following hold:

(i) 𝑓∗, 𝑓 ∗ ≥ 0 on R,
(ii) 𝑓∗ has 2𝑚 zeros counting multiplicity,

(iii) 𝑓 ∗ has 2𝑚 − 2 zeros counting multiplicity,
(iv) the zeros of 𝑓∗ and 𝑓 ∗ strictly interlace if the zeros of 𝑓 are removed, and
(v) the coefficient of 𝑓𝑛 in 𝑓∗ is equal to 𝑎𝑛.

Proof. See Problem 8.2. ⊓⊔

Problems

8.1 Prove Karlin’s Positivstellensatz 8.4, i.e., adapt the proof of Karlin’s Positivstel-
lensatz 8.1 such that both interval ends 𝑎 and 𝑏 of [𝑎, 𝑏] are mapped to −∞ and +∞,
respectively.

8.2 Prove Karlin’s Nichtnegativstellensatz 8.5, i.e., adapt the proof of Karlin’s Nicht-
negativstellensatz 8.3 such that both interval ends 𝑎 and 𝑏 of [𝑎, 𝑏] are mapped to
−∞ and +∞, respectively.
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Chapter 9
Non-Negative Algebraic Polynomials on [𝒂, 𝒃]

I hold that it is only when we can prove everything we assert
that we understand perfectly the thing under consideration.

Gottfried Wilhelm Leibniz [Lei89]

We developed in the previous chapters the Positiv- and Nichtnegativestellensätze for
general T- and ET-systems due to Karlin. We will now apply these to the algebraic
polynomials, i.e., we will plug in Example 5.15 and Example 5.17.

9.1 Sparse Algebraic Positivstellensatz on [𝒂, 𝒃]

At first let us have a look how all sparse strictly positive polynomials on some interval
[𝑎, 𝑏] ⊆ (0,∞) look like.

Theorem 9.1 (Sparse Algebraic Positivstellensatz on [𝑎, 𝑏] with 0 < 𝑎 < 𝑏). Let
𝑛 ∈ N0, 𝛼0, . . . , 𝛼𝑛 ∈ R be real numbers with 𝛼0 < 𝛼1 < · · · < 𝛼𝑛, and let
F = {𝑥𝛼𝑖 }𝑛

𝑖=0. Then for any 𝑓 =
∑𝑛
𝑖=0 𝑎𝑖𝑥

𝛼𝑖 ∈ lin F with 𝑓 > 0 on [𝑎, 𝑏] and 𝑎𝑛 > 0
there exists a unique decomposition

𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F such that

(i) for 𝑛 = 2𝑚 there exist points 𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑚−1 ∈ [𝑎, 𝑏] with

𝑎 < 𝑥1 < 𝑦1 < · · · < 𝑥𝑚 < 𝑏

and constants 𝑐∗, 𝑐∗ > 0 with

𝑓∗ (𝑥) = 𝑐∗ · det
(
𝑥𝛼0 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
≥ 0 (9.1)

and

𝑓 ∗ (𝑥) = −𝑐∗ · det
(
𝑥𝛼0 𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚−2 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 𝑎 (𝑦1 𝑦1) . . . (𝑦𝑚−1 𝑦𝑚−1) 𝑏

)
≥ 0 (9.2)

101
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for all 𝑥 ∈ [𝑎, 𝑏], or
(ii) for 𝑛 = 2𝑚 + 1 there exist points 𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑚 ∈ [𝑎, 𝑏] with

𝑎 < 𝑦1 < 𝑥1 < · · · < 𝑦𝑚 < 𝑥𝑚 < 𝑏

and 𝑐∗, 𝑐∗ > 0 with

𝑓∗ (𝑥) = −𝑐∗ · det
(
𝑥𝛼0 𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚 𝑥𝛼2𝑚+1

𝑥 𝑎 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
≥ 0 (9.3)

and
𝑓 ∗ (𝑥) = 𝑐∗ · det

(
𝑥𝛼0 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚 𝑥𝛼2𝑚+1

𝑥 (𝑦1 𝑦1) . . . (𝑦𝑚 𝑦𝑚) 𝑏

)
≥ 0 (9.4)

for all 𝑥 ∈ [𝑎, 𝑏].

Proof. By Example 5.17 we have that F on [𝑎, 𝑏] is an ET-system. Hence, Karlin’s
Positivstellensatz 7.3 applies. We check both cases 𝑛 = 2𝑚 and 𝑛 = 2𝑚+1 separately.
𝑛 = 2𝑚: By Karlin’s Positivstellensatz 7.3 we have that the zero set Z( 𝑓 ∗) of 𝑓 ∗

has index 2𝑚 and contains 𝑏 with index 1, i.e., 𝑎 ∈ Z( 𝑓 ∗) and all other zeros have
index 2. Hence, Z( 𝑓 ∗) = {𝑎 = 𝑦0 < 𝑦1 < · · · < 𝑦𝑚−1 < 𝑦𝑚 = 𝑏}. By Karlin’s
Positivstellensatz 7.3 we have that Z( 𝑓∗) also has index 2𝑚 and the zeros of 𝑓∗
and 𝑓 ∗ interlace. Then the determinantal representations of 𝑓∗ and 𝑓 ∗ follow from
Remark 4.28.
𝑛 = 2𝑚+1: By Karlin’s Positivstellensatz 7.3 we have that 𝑏 ∈ Z( 𝑓 ∗) and since the

index ofZ( 𝑓 ∗) is 2𝑚+1 we have that there are only double zeros 𝑦1, . . . , 𝑦𝑚 ∈ (𝑎, 𝑏)
in Z( 𝑓 ∗). Similar we find that 𝑎 ∈ Z( 𝑓∗) since its index is odd and only double
zeros 𝑥1, . . . , 𝑥𝑚 ∈ (𝑎, 𝑏) in Z( 𝑓∗) remain. By Karlin’s Positivstellensatz 7.3 (iii)
the zeros 𝑥𝑖 and 𝑦𝑖 strictly interlace and the determinantal representation of 𝑓∗ and
𝑓 ∗ follow again from Remark 4.28. ⊓⊔

Note, if 𝛼0, . . . , 𝛼𝑛 ∈ N0 then by Example 5.17 equation (5.14) the algebraic
polynomials 𝑓∗ and 𝑓 ∗ in (9.1) – (9.4) can be written down with Schur polynomials.
Remark 9.2. The condition 𝑎𝑛 > 0 in Theorem 9.1 is no restriction. The result also
holds for 𝑎𝑛 < 0 as long as 𝑓 > 0 on [𝑎, 𝑏]. Since [𝑎, 𝑏] is compact the polynomials
𝑥𝛼𝑖 are bounded. In the definition of a T-system the order of the functions 𝑓𝑖 can be
altered since only any linear combination has to have at most 𝑛 zeros. Hence, in a
𝑓 > 0 at least one coefficient 𝑎𝑖 is larger then zero and we interchange 𝑓𝑖 with 𝑓𝑛. A
possible sign change in the 𝑓∗ and 𝑓 ∗ in (9.1) – (9.4) might appear. ◦

Theorem 9.1 does not hold for 𝑎 = 0 and 𝛼0 > 0 or 𝛼0, . . . , 𝛼𝑘 < 0. In case 𝛼0 > 0
the determinantal representations of 𝑓 ∗ for 𝑛 = 2𝑚 and 𝑓∗ for 𝑛 = 2𝑚 +1 are the zero
polynomials. In fact, in this case F is not even a T-system since in Lemma 4.5 the
determinant contains a zero column if 𝑥0 = 0. We need to have 𝛼0 = 0 (𝑥𝛼0 = 1) to
let 𝑎 = 0. For 𝛼0, . . . , 𝛼𝑘 < 0 we have singularities at 𝑥 = 0 and hence no T-system.

Corollary 9.3. If 𝛼0 = 0 in Theorem 9.1 then Theorem 9.1 also holds with 𝑎 = 0.
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Proof. The determinantal representations of 𝑓∗ for 𝑛 = 2𝑚 + 1 and 𝑓 ∗ for 𝑛 =

2𝑚 in Theorem 9.1 continuously depend on 𝑎. It is sufficient to show that these
representations are non-trivial (not the zero polynomial) for 𝑎 = 0. We show this for
𝑓∗ in case (ii) 𝑛 = 2𝑚 + 1. The other cases are equivalent.

We have that F is a T-system on [0, 𝑏] with 𝑏 > 0. For 𝜀 > 0 small enough we
set

𝑔𝜀 (𝑥) = −𝜀−𝑚 · det
(
1 𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚 𝑥𝛼2𝑚+1

𝑥 0 𝑥1 𝑥1 + 𝜀 . . . 𝑥𝑚 𝑥𝑚 + 𝜀

)

= −𝜀−𝑚 · det

©­­­­­­«

1 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚+1

1 0 0 . . . 0
1 𝑥

𝛼1
1 𝑥

𝛼2
1 . . . 𝑥

𝛼2𝑚+1
1

...
...

...
...

1 (𝑥𝑚 + 𝜀)𝛼1 (𝑥𝑚 + 𝜀)𝛼2 . . . (𝑥𝑚 + 𝜀)𝛼2𝑚+1

ª®®®®®®¬
develop with respect to the second row

= 𝜀−𝑚 · det
©­­­­«

𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1

𝑥
𝛼1
1 𝑥

𝛼2
1 . . . 𝑥

𝛼2𝑚−1
1

...
...

...

(𝑥𝑚 + 𝜀)𝛼1 (𝑥𝑚 + 𝜀)𝛼2 . . . (𝑥𝑚 + 𝜀)𝛼2𝑚+1

ª®®®®¬
= 𝜀−𝑚 · det

(
𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚 𝑥𝛼2𝑚+1

𝑥 𝑥1 𝑥1 + 𝜀 . . . 𝑥𝑚 𝑥𝑚 + 𝜀

)
.

Then 𝑥1, 𝑥1 + 𝜀, . . . , 𝑥𝑚, 𝑥𝑚 + 𝜀 ∈ (0, 𝑏], i.e., {𝑥𝛼𝑖 }𝑛
𝑖=1 is an ET-system on [𝑎′, 𝑏]

with 0 = 𝑎 < 𝑎′ < 𝑥1, see Example 5.17. By Remark 4.28 the limit 𝜀 ↘ 0 is not the
zero polynomial which ends the proof. ⊓⊔

Remark 9.4. It is clear that if 𝛼0 > 0 then we can just factor out 𝑥𝛼0

𝑓 (𝑥) = 𝑎0𝑥
𝛼0 + 𝑎1𝑥

𝛼1 + · · · + 𝑎𝑛𝑥𝛼𝑛 = 𝑥𝛼0 · (𝑎0 + 𝑎1𝑥
𝛼1−𝛼0 + · · · + 𝑎𝑛𝑥𝛼𝑛−𝛼0︸                                    ︷︷                                    ︸

=: 𝑓 (𝑥 )

)

and apply Theorem 9.1 or Corollary 9.3 to 𝑓 . ◦
We now prove a stronger version of (3.5). We only need the sparse algebraic

Positivstellensatz on [𝑎, 𝑏] (Theorem 9.1) but not the sparse algebraic Nichtnega-
tivestellensatz (Theorem 9.10) even for 𝑝 ≥ 0 on [𝑎, 𝑏]. This result was already
proved in [KS53]. Later the T-system approach was developed in [Kar63] and sum-
marized and expanded in [KS66].

We now get the strengthened version of the Lukács–Markov Theorem 3.7. Earlier
versions are due to Markov [Mar06] and Lukács [Luk18], see the Lukács–Markov
Theorem 3.7 in Section 3.1 and the discussion around it.
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Lukács–Markov Theorem 9.5 (see [KS53, Thm. 10.3] or [KN77, p. 373, Thm. 6.4]).
Let 𝑝 ∈ R[𝑥] with 𝑝 ≥ 0 on [𝑎, 𝑏] with −∞ < 𝑎 < 𝑏 < ∞ and let 𝑧1, . . . , 𝑧𝑟 ∈ [𝑎, 𝑏]
be the zeros of 𝑝 in [𝑎, 𝑏] with algebraic multiplicities 𝑚1, . . . , 𝑚𝑟 ∈ N.

(i) If deg 𝑝−𝑚1−· · ·−𝑚𝑟 = 2𝑚,𝑚 ∈ N0, is even then there exist points 𝑥1, . . . , 𝑥𝑚
and 𝑦1, . . . , 𝑦𝑚−1 with

𝑎 < 𝑥1 < 𝑦1 < · · · < 𝑦𝑚−1 < 𝑥𝑚 < 𝑏

and constants 𝛼, 𝛽 > 0 such that

𝑝(𝑥) = (𝑥 − 𝑧1)𝑚1 · · · (𝑥 − 𝑧𝑟 )𝑚𝑟 ·
(
𝛼 ·

𝑚∏
𝑖=1

(𝑥 − 𝑥𝑖)2

+𝛽 · (𝑥 − 𝑎) · (𝑏 − 𝑥) ·
𝑚−1∏
𝑖=1

(𝑥 − 𝑦𝑖)2

)
.

(ii) If deg 𝑝 − 𝑚1 − · · · − 𝑚𝑟 = 2𝑚 + 1, 𝑚 ∈ N0, is odd then there exist points
𝑥1, . . . , 𝑥𝑚 and 𝑦0, . . . , 𝑦𝑚−1 with

𝑎 < 𝑦0 < 𝑥1 < 𝑦1 < · · · < 𝑦𝑚−1 < 𝑥𝑚 < 𝑏

and constants 𝛼, 𝛽 > 0 such that

𝑝(𝑥) = (𝑥 − 𝑧1)𝑚1 · · · (𝑥 − 𝑧𝑟 )𝑚𝑟 ·
(
𝛼 · (𝑥 − 𝑎) ·

𝑚∏
𝑖=1

(𝑥 − 𝑥𝑖)2

+𝛽 · (𝑏 − 𝑥) ·
𝑚−1∏
𝑖=0

(𝑥 − 𝑦𝑖)2

)
.

Proof. We have 𝑝(𝑥) = (𝑥 − 𝑧1)𝑚1 · · · (𝑥 − 𝑧𝑟 )𝑚𝑟 · 𝑝(𝑥) with 𝑝 ∈ R[𝑥] and 𝑝 > 0
on [𝑎, 𝑏]. By a translation 𝑝( · + 𝑎) we can assume 𝑎 = 0 and the assertion follows
from Corollary 9.3. ⊓⊔

Note, in Theorem 9.1 (and Theorem 9.10) we need 𝑎 ≥ 0. But in the Lukács–
Markov Theorem 9.5 we can allow for arbitrary 𝑎 ∈ R since by 𝑝 ∈ R[𝑥]≤deg 𝑝 the
translation 𝑝( · + 𝑎) remains in R[𝑥]≤deg 𝑝 . We see here also why in Theorem 9.1
and Corollary 9.3 we have the restriction 𝑎 ≥ 0 since a translation can produce
monomials which are not in the family {𝑥𝛼𝑖 }𝑛

𝑖=0.
Additionally, note that in Lukács–Markov Theorem 9.5 we can have 𝑧𝑖 = 𝑎 or 𝑏

for some 𝑖.
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9.2 Sparse Hausdorff Moment Problem

Theorem 9.1 is a complete description of int (lin F )+. Since F is continuous on
the compact interval [𝑎, 𝑏] and 𝑥𝛼0 > 0 on [𝑎, 𝑏], we have that the truncated
moment cone is closed. Hence, (lin F )+ and the moment cone are dual to each other.
With Theorem 9.1 we can now write down the conditions for the sparse truncated
Hausdorff moment problem on [𝑎, 𝑏] with 𝑎 > 0. A first but insufficient attempt was
done in [Hau21b] since Hausdorff did not have access to the sparse Positivstellensatz
by Karlin and therefore Theorem 9.1.

Theorem 9.6 (Sparse Truncated Hausdorff Moment Problem on [𝑎, 𝑏] with 𝑎 > 0).
Let 𝑛 ∈ N0, 𝛼0, . . . , 𝛼𝑛 ∈ [0,∞) with 𝛼0 < · · · < 𝛼𝑛, and 𝑎, 𝑏 with 0 < 𝑎 < 𝑏. Set
F = {𝑥𝛼𝑖 }𝑛

𝑖=0. Then the following are equivalent:

(i) 𝐿 : lin F → R is a truncated [𝑎, 𝑏]-moment functional.
(ii) 𝐿 (𝑝) ≥ 0 holds for all

𝑝(𝑥) :=


det

(
𝑥𝛼0 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
− det

(
𝑥𝛼0 𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚−2 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 𝑎 (𝑥1 𝑥1) . . . (𝑥𝑚−1 𝑥𝑚−1) 𝑏

) if 𝑛 = 2𝑚

and

𝑝(𝑥) :=


− det

(
𝑥𝛼0 𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚 𝑥𝛼2𝑚+1

𝑥 𝑎 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
det

(
𝑥𝛼0 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚 𝑥𝛼2𝑚+1

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚) 𝑏

) if 𝑛 = 2𝑚 + 1

and all 𝑥1, . . . , 𝑥𝑚 with 𝑎 < 𝑥1 < · · · < 𝑥𝑚 < 𝑏.

Proof. The implication (i) ⇒ (ii) is clear since all given polynomials 𝑝 are non-
negative on [𝑎, 𝑏]. It is therefore sufficient to prove (ii) ⇒ (i).

Since 𝑎 > 0 we have that 𝑥𝛼0 > 0 on [𝑎, 𝑏] and since [𝑎, 𝑏] is compact we have
that the moment cone ((lin F )+)∗ as the dual of the cone of non-negative (sparse)
polynomials (lin F )+ is a closed pointed cone.

To establish 𝐿 ∈ ((lin F )+)∗ it is sufficient to have 𝐿 ( 𝑓 ) ≥ 0 for all 𝑓 ∈ (lin F )+.
Let 𝑓 ∈ (lin F )+. Then for all 𝜀 > 0 we have 𝑓𝜀 := 𝑓 + 𝜀 · 𝑥𝛼𝑛 > 0 on [𝑎, 𝑏],
i.e., by Theorem 9.1 𝑓𝜀 is a conic combination of the polynomials 𝑝 in (ii) and
hence 𝐿 ( 𝑓 ) + 𝜀 · 𝐿 (𝑥𝛼𝑛 ) = 𝐿 ( 𝑓𝜀) ≥ 0 for all 𝜀 > 0. Since 𝑥𝛼𝑛 > 0 on [𝑎, 𝑏] we
also have that 𝑥𝛼𝑛 is a conic combination of the polynomials 𝑝 in (ii) and therefore
𝐿 (𝑥𝛼𝑛 ) ≥ 0. Then 𝐿 ( 𝑓 ) ≥ 0 follows from 𝜀 → 0 which proves (i). ⊓⊔

Corollary 9.7. If 𝛼0 = 0 in Theorem 9.6 then Theorem 9.6 also holds with 𝑎 = 0,
i.e., the following are equivalent:
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(i) 𝐿 : lin F → R is a truncated [0, 𝑏]-moment functional.
(ii) 𝐿 (𝑝) ≥ 0 holds for all

𝑝(𝑥) :=


det

(
1 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
det

(
𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚−2 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚−1 𝑥𝑚−1) 𝑏

) if 𝑛 = 2𝑚

and

𝑝(𝑥) :=


det

(
𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚 𝑥𝛼2𝑚+1

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
det

(
1 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚 𝑥𝛼2𝑚+1

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚) 𝑏

) if 𝑛 = 2𝑚 + 1

and all 𝑥1, . . . , 𝑥𝑚 with 𝑎 < 𝑥1 < · · · < 𝑥𝑚 < 𝑏.

Proof. Follows immediately from Corollary 9.3. ⊓⊔

For the following we want to remind the reader of the Müntz–Szász Theorem
[Mün14, Szá16]. It states that for real exponents 𝛼0 = 0 < 𝛼1 < 𝛼2 < . . . the
vector space lin {𝑥𝛼𝑖 }𝑖∈N0 of finite linear combinations is dense in C([0, 1],R) with
respect to the sup-norm if and only if

∑
𝑖∈N

1
𝛼𝑖

= ∞.
We state the following only for the classical case of the interval [0, 1]. Other

cases [𝑎, 𝑏] ⊆ [0,∞) are equivalent. Hausdorff required 𝛼𝑖 → ∞. The Müntz–
Szász Theorem does not require 𝛼𝑖 → ∞. The conditions 𝛼0 = 0 and

∑
𝑖∈N

1
𝛼𝑖

= ∞
already appear in [Hau21b, eq. (17)]. We can remove here the use of the Müntz–Szász
Theorem and therefore the condition

∑
𝑖∈N

1
𝛼𝑖

= ∞ for the existence of a representing
measure. We need it only for uniqueness. Additionally, we allow negative exponents.
The following is an improvement of [Hau21b] and we are not aware of a reference
for this result.

Theorem 9.8 (General Sparse Hausdorff Moment Problem on [𝑎, 𝑏] with 0 ≤ 𝑎 < 𝑏).
Let 𝐼 ⊆ N0 be an index set (finite or infinite), let {𝛼𝑖}𝑖∈𝐼 be such that 𝛼𝑖 ≠ 𝛼 𝑗 for all
𝑖 ≠ 𝑗 and

(a) if 𝑎 = 0 then {𝛼𝑖}𝑖∈𝐼 ⊂ [0,∞) with 𝛼𝑖 = 0 for an 𝑖 ∈ 𝐼, or
(b) if 𝑎 > 0 then {𝛼𝑖}𝑖∈𝐼 ⊂ R.

Let F = {𝑥𝛼𝑖 }𝑖∈𝐼 . Then the following are equivalent:

(i) 𝐿 : lin F → R is a Hausdorff moment functional.
(ii) 𝐿 (𝑝) ≥ 0 holds for all 𝑝 ∈ (lin F )+.

(iii) 𝐿 (𝑝) ≥ 0 holds for all 𝑝 ∈ lin F with 𝑝 > 0.
(iv) 𝐿 (𝑝) ≥ 0 holds for all
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𝑝(𝑥) =



det

(
𝑥𝛼𝑖0 𝑥𝛼𝑖1 𝑥𝛼𝑖2 . . . 𝑥𝛼𝑖2𝑚−1 𝑥𝛼2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
, if |𝐼 | = 2𝑚 or ∞,

det

(
𝑥𝛼𝑖1 𝑥𝛼𝑖2 𝑥𝛼𝑖3 . . . 𝑥𝛼𝑖2𝑚−2 𝑥𝛼𝑖2𝑚−1 𝑥𝛼𝑖2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚−1 𝑥𝑚−1) 𝑏

)
, if |𝐼 | = 2𝑚 or ∞,

det

(
𝑥𝛼𝑖1 𝑥𝛼𝑖2 𝑥𝛼𝑖3 . . . 𝑥𝛼𝑖2𝑚 𝑥𝛼𝑖2𝑚+1

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
, if |𝐼 | = 2𝑚 + 1 or ∞,

det

(
𝑥𝛼𝑖0 𝑥𝛼𝑖1 𝑥𝛼𝑖2 . . . 𝑥𝛼𝑖2𝑚−1 𝑥𝛼𝑖2𝑚 𝑥𝛼𝑖2𝑚+1

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚) 𝑏

)
, if |𝐼 | = 2𝑚 + 1 or ∞,

for all 𝑚 ∈ N if |𝐼 | = ∞, all 0 < 𝑥1 < 𝑥2 < · · · < 𝑥𝑚 < 𝑏, and all
𝛼𝑖0 < 𝛼𝑖1 < · · · < 𝛼𝑖𝑚 with 𝛼𝑖0 = 0 if 𝑎 = 0.

If additionally
∑
𝑖:𝛼𝑖≠0

1
|𝛼𝑖 | = ∞ then 𝐿 is determinate.

Proof. The case |𝐼 | < ∞ is Theorem 9.6. We therefore prove the case |𝐼 | = ∞. The
choice 𝛼𝑖0 < 𝛼𝑖1 < · · · < 𝛼𝑖𝑚 with 𝛼𝑖0 = 0 if 𝑎 = 0 makes {𝑥𝛼𝑖 𝑗 }𝑚

𝑗=0 a T-system. The
implications “(i) ⇒ (ii) ⇔ (iii)” are clear and “(iii) ⇔ (iv)” is Theorem 9.1. It is
therefore sufficient to show “(ii) ⇒ (i)”. But the space lin F is an adapted space and
the assertion follows therefore from the Basic Representation Theorem 2.9.

For the determinacy of 𝐿 split {𝛼𝑖}𝑖∈𝐼 into positive and negative exponents. If∑
𝑖:𝛼𝑖≠0

1
|𝛼𝑖 | = ∞ then the corresponding sum over at least one group is infinite. If

the sum over the positive exponents is infinite apply the Müntz–Szász Theorem. If
the sum over the negative exponents is infinite apply the Müntz–Szász Theorem to
{(𝑥−1)−𝛼𝑖 }𝑖∈𝐼:𝛼𝑖<0 since 𝑎 > 0. ⊓⊔

Note, since [𝑎, 𝑏] is compact the fact that {𝑥𝛼𝑖 }𝑖∈𝐼 is an adapted space is trivial.
Remark 9.9. If in Theorem 9.8 we have 𝑎 = 0 and 𝛼0 > 0 then we can of course factor
out 𝑥𝛼0 and instead of determining d𝜇(𝑥) of the linear functional 𝐿 we determine
d𝜇̃(𝑥) = 𝑥𝛼0 d𝜇(𝑥). ◦

9.3 Sparse Algebraic Nichtnegativstellensatz on [𝒂, 𝒃]

The non-negative polynomials are described in the following result.

Theorem 9.10 (Sparse Algebraic Nichtnegativstellensatz on [𝑎, 𝑏] with 0 < 𝑎 < 𝑏).
Let 𝑛 ∈ N0, 𝛼0, . . . , 𝛼𝑛 ∈ R be real numbers with 𝛼0 < 𝛼1 < · · · < 𝛼𝑛, and
let F = {𝑥𝛼𝑖 }𝑛

𝑖=0. Let 𝑓 ∈ lin F with 𝑓 ≥ 0 on [𝑎, 𝑏]. Then there exist points
𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ [𝑎, 𝑏] (not necessarily distinct) with 𝑦𝑛 = 𝑏 which include
the zeros of 𝑓 with multiplicities such that

𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F , 𝑓∗, 𝑓 ∗ ≥ 0 on [𝑎, 𝑏]. The polynomials 𝑓∗ and 𝑓 ∗ are given by
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𝑓∗ (𝑥) = 𝑐∗ · det
(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥 𝑥1 . . . 𝑥𝑛

)
and 𝑓 ∗ (𝑥) = 𝑐∗ · det

(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥 𝑦1 . . . 𝑦𝑛

)
for all 𝑥 ∈ [𝑎, 𝑏] and some constants 𝑐∗, 𝑐∗ ∈ R

Removing the zeros of 𝑓 from 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 we can assume that the
remaining 𝑥𝑖 and 𝑦𝑖 are disjoint and when grouped by size the groups strictly
interlace:

𝑎 ≤ 𝑥𝑖1 = · · · = 𝑥𝑖𝑘 < 𝑦 𝑗1 = · · · = 𝑦 𝑗𝑙 < · · · < 𝑥𝑖𝑝 = · · · = 𝑥𝑖𝑞 < 𝑦 𝑗𝑟 = · · · = 𝑦 𝑗𝑠 = 𝑏.

Each such group in (𝑎, 𝑏) has an even number of members.

Proof. By Example 5.17 we have that F on [𝑎, 𝑏] is an ET-system. We then apply
Karlin’s Nichtnegativstellensatz 7.6 similar to the proof of Theorem 9.1. ⊓⊔

Remark 9.11. The signs of 𝑐∗ and 𝑐∗ are determined by 𝑥1 and 𝑦1 and their multi-
plicity. If 𝑥1 = · · · = 𝑥𝑘 < 𝑥𝑘+1 ≤ · · · ≤ 𝑥𝑛 then sgn 𝑐∗ = (−1)𝑘 . The same holds for
𝑐∗ from 𝑦1. ◦
Example 9.12. Let 𝛼 ∈ (0,∞) and let F = {1, 𝑥𝛼} on [0, 1]. Then we have
1 = 1∗ + 1∗ with 1∗ = 𝑥𝛼 and 1∗ = 1 − 𝑥𝛼. ◦

In Theorem 9.10 we can let 𝑎 = 0 if 𝛼0 = 0 and 𝑓 (0) > 0.

Theorem 9.13 (Sparse Algebraic Nichtnegativstellensatz on [0, 𝑏] with 0 < 𝑏). Let
𝑛 ∈ N0, 𝛼0, . . . , 𝛼𝑛 ∈ R be real numbers with 0 = 𝛼0 < 𝛼1 < · · · < 𝛼𝑛, and let
F = {𝑥𝛼𝑖 }𝑛

𝑖=0 on [0, 𝑏] with 𝑏 > 0. Let 𝑓 ∈ lin F with 𝑓 ≥ 0 on [0, 𝑏] and 𝑓 (0) > 0.
Then there exist points 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ [0, 𝑏] (not necessarily distinct) with
𝑦𝑛 = 𝑏 which include the zeros of 𝑓 with multiplicities such that

𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F , 𝑓∗, 𝑓 ∗ ≥ 0 on [0, 𝑏] and the points 𝑥1, . . . , 𝑥𝑛 are the ze-
ros of 𝑓∗ and 𝑦1, . . . , 𝑦𝑛 are the zeros of 𝑓 ∗. Removing the zeros of 𝑓 from
𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 we can assume that the remaining 𝑥𝑖 and 𝑦𝑖 are disjoint and
when grouped by size the groups strictly interlace:

0 ≤ 𝑥𝑖1 = · · · = 𝑥𝑖𝑘 < 𝑦 𝑗1 = · · · = 𝑦 𝑗𝑙 < · · · < 𝑥𝑖𝑝 = · · · = 𝑥𝑖𝑞 < 𝑦 𝑗𝑟 = · · · = 𝑦 𝑗𝑠 = 𝑏.

Each such group in (𝑎, 𝑏) has an even number of members.

Proof. See Problem 9.1. ⊓⊔

Problems

9.1 Prove Theorem 9.13, i.e., show that Theorem 9.10 can be extended to the case
𝑎 = 0, i.e., on [0, 𝑏] with 𝑏 > 0.



Chapter 10
Non-Negative Algebraic Polynomials on [0,∞)

and on R

Mathematics is the tool specially suited for dealing with
abstract concepts of any kind and there is no limit to its
power in this field.

Paul Adrien Maurice Dirac [Dir58, p. viii]

We went a long way to arrive here. But by using Karlin’s Positivstellensatz 8.1 and
Karlin’s Nichtnegativstellensatz 8.3 on the interval [0,∞) we can now describe all
sparse algebraic strictly positive and non-negative polynomials on [0,∞) and on R.

10.1 Sparse Algebraic Positivstellensatz on [0,∞)

For the sparse algebraic Positivstellensatz on [𝑎, 𝑏] (Theorem 9.1) we had a lot of
freedom in the exponents 𝛼𝑖 for 𝑎 > 0. We no longer have such a large range of
freedom on [0,∞). If we now plug Example 4.16 into Karlin’s Positivstellensatz 8.1
we get the following.

Theorem 10.1 (Sparse Algebraic Positivstellensatz on [0,∞)). Let 𝑛 ∈ N0,
𝛼0, . . . , 𝛼𝑛 ∈ [0,∞) be real numbers with 𝛼0 = 0 < 𝛼1 < · · · < 𝛼𝑛, and let
F = {𝑥𝛼𝑖 }𝑛

𝑖=0 on [0,∞). Then for any 𝑓 =
∑𝑛
𝑖=0 𝑎𝑖 𝑓𝑖 ∈ lin F with 𝑓 > 0 on [0,∞)

and 𝑎𝑛 > 0 there exists a unique decomposition

𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F and 𝑓∗, 𝑓 ∗ ≥ 0 on [0,∞) such that the following hold:

(i) If 𝑛 = 2𝑚 then the polynomials 𝑓∗ and 𝑓 ∗ each possess 𝑚 distinct zeros {𝑥𝑖}𝑚𝑖=1
and {𝑦𝑖}𝑚−1

𝑖=0 satisfying

0 = 𝑦0 < 𝑥1 < 𝑦1 < · · · < 𝑦𝑚−1 < 𝑥𝑚 < ∞.

The polynomials 𝑓∗ and 𝑓 ∗ are given by

𝑓∗ (𝑥) = 𝑐∗ · det
(
1 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
and
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𝑓 ∗ (𝑥) = 𝑐∗ · det
(
𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚−2 𝑥𝛼2𝑚−1

𝑥 (𝑦1 𝑦1) . . . (𝑦𝑚−1 𝑦𝑚−1)

)
for some 𝑐∗, 𝑐∗ > 0.

(ii) If 𝑛 = 2𝑚 +1 then 𝑓∗ and 𝑓 ∗ have zeros {𝑥𝑖}𝑚+1
𝑖=1 and {𝑦𝑖}𝑚𝑖=1 respectively which

satisfy
0 = 𝑥1 < 𝑦1 < 𝑥2 < · · · < 𝑦𝑚 < 𝑥𝑚+1 < ∞.

The polynomials 𝑓∗ and 𝑓 ∗ are given by

𝑓∗ (𝑥) = 𝑐∗ · det
(
𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚 𝑥𝛼2𝑚+1

𝑥 (𝑥2 𝑥2) . . . (𝑥𝑚+1 𝑥𝑚+1)

)
and

𝑓 ∗ (𝑥) = 𝑐∗ · det
(
1 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 (𝑦1 𝑦1) . . . (𝑦𝑚 𝑦𝑚)

)
for some 𝑐∗, 𝑐∗ > 0.

Proof. We have that F fulfills conditions (a) and (b) of Karlin’s Positivstellen-
satz 8.1 and by Example 4.15 we known that F on [0,∞) is also a T-system, i.e.,
(c) in Karlin’s Positivstellensatz 8.1 is fulfilled. We can therefore apply Karlin’s
Positivstellensatz 8.1.

(i) 𝑛 = 2𝑚: By Karlin’s Positivstellensatz 8.1 (i) the unique 𝑓∗ and 𝑓 ∗ each
possess 𝑚 distinct zeros {𝑥𝑖}𝑚𝑖=1 and {𝑦𝑖}𝑚−1

𝑖=0 with 0 ≤ 𝑦0 < 𝑥1 < · · · < 𝑦𝑚−1 <
𝑥𝑚 < ∞. Since 𝑥1, . . . , 𝑥𝑚 ∈ (0,∞) and F on [𝑥1/2,∞) is an ET-system we
immediately get the determinantal representation of 𝑓∗ by Corollary 8.2 (combine
Karlin’s Positivstellensatz 8.1 with Remark 4.28). For 𝑓 ∗ we have 𝑦0 = 0 and by
Example 5.16 this is no ET-system. Hence, we prove the representation of 𝑓 ∗ by
hand, similar as in the proof of Corollary 9.3.

Let 𝜀 > 0 be such that 0 = 𝑦0 < 𝑦1 < 𝑦1 + 𝜀 < · · · < 𝑦𝑚−1 < 𝑦𝑚−1 + 𝜀 holds.
Then

𝑔𝜀 (𝑥) = −𝜀−𝑚+1 · det
(
1 𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚−2 𝑥𝛼2𝑚−1

𝑥 0 𝑦1 𝑦1 + 𝜀 . . . 𝑦𝑚−1 𝑦𝑚−1 + 𝜀

)

= −𝜀−𝑚+1 · det

©­­­­­­«

1 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1

1 0 0 . . . 0
1 𝑦

𝛼1
1 𝑦

𝛼2
1 . . . 𝑦

𝛼2𝑚−1
1

...
...

...
...

1 (𝑦𝑚−1 + 𝜀)𝛼1 (𝑦𝑚−1 + 𝜀)𝛼2 . . . (𝑦𝑚−1 + 𝜀)𝛼2𝑚−1

ª®®®®®®¬
expand by the second row
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= 𝜀−𝑚+1 · det
©­­­­«

𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1

𝑦
𝛼1
1 𝑦

𝛼2
1 . . . 𝑦

𝛼2𝑚−1
1

...
...

...

(𝑦𝑚−1 + 𝜀)𝛼1 (𝑦𝑚−1 + 𝜀)𝛼2 . . . (𝑦𝑚−1 + 𝜀)𝛼2𝑚−1

ª®®®®¬
= 𝜀−𝑚+1 · det

(
𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−2 𝑥𝛼2𝑚−1

𝑥 𝑦1 𝑦1 + 𝜀 . . . 𝑦𝑚−1 𝑦𝑚−1 + 𝜀

)
is non-negative on [0, 𝑦1] and every [𝑦𝑖 + 𝜀, 𝑦𝑖+1]. Now 𝑦0 = 0 is removed and all
𝑦𝑖 , 𝑦𝑖 + 𝜀 > 0. Hence, we can work on [𝑦1/2,∞) where {𝑥𝛼𝑖 }2𝑚

𝑖=1 is an ET-system
and we can go to the limit 𝜀 ↘ 0 as in Remark 4.28. Then Corollary 8.2 proves the
representation of 𝑓 ∗.

(ii) 𝑛 = 2𝑚 + 1: Similar to the case (i) with 𝑛 = 2𝑚. ⊓⊔

If all 𝛼𝑖 ∈ N0 then we can express the 𝑓∗ and 𝑓 ∗ in Theorem 10.1 also with Schur
polynomials, see (5.14) in Example 5.17.

We now prove a stronger version of (3.4), i.e., 𝑝 = 𝑓 2 + 𝑥 · 𝑔2 for any 𝑝 ≥ 0
on [0,∞). It is sufficient to have only the sparse algebraic Positivstellensatz (Theo-
rem 10.1). A previous version already appeared in [KS53].

Corollary 10.2 (see [KS66, p. 169, Cor. 8.1]). Let 𝑝 ∈ R[𝑥] with 𝑝 ≥ 0 on [0,∞).
Let 𝑧1, . . . , 𝑧𝑟 ∈ [0,∞) be the zeros of 𝑝 in [0,∞) and let 𝑚1, . . . , 𝑚𝑟 ∈ N be the
corresponding algebraic multiplicities.

(i) If deg 𝑝 − 𝑚1 − · · · − 𝑚𝑟 = 2𝑚, 𝑚 ∈ N0, is even then there exist points {𝑥𝑖}𝑚𝑖=1
and {𝑦𝑖}𝑚−1

𝑖=1 ⊆ (0,∞) with

0 < 𝑥1 < 𝑦1 < · · · < 𝑦𝑚−1 < 𝑥𝑚 < ∞

and constants 𝑎, 𝑏 > 0 such that

𝑝(𝑥) =
𝑟∏
𝑖=1

(𝑥 − 𝑧𝑖)𝑚𝑖 ·
(
𝑎 ·

𝑚∏
𝑖=1

(𝑥 − 𝑥𝑖)2 + 𝑏 · 𝑥 ·
𝑚−1∏
𝑖=1

(𝑥 − 𝑦𝑖)2

)
.

The constant 𝑎 is the leading coefficient of 𝑝.
(ii) If deg 𝑝−𝑚1−· · ·−𝑚𝑟 = 2𝑚+1,𝑚 ∈ N0, is odd then there exist points {𝑥𝑖}𝑚𝑖=1

and {𝑦𝑖}𝑚𝑖=1 ⊂ (0,∞) with

0 < 𝑥1 < 𝑦1 < · · · < 𝑥𝑚 < 𝑦𝑚 < ∞

and constants 𝑎, 𝑏 > 0 such that

𝑝(𝑥) =
𝑟∏
𝑖=1

(𝑥 − 𝑧𝑖)𝑚𝑖 ·
(
𝑎 ·

𝑚∏
𝑖=1

(𝑥 − 𝑥𝑖)2 + 𝑏 · 𝑥 ·
𝑚∏
𝑖=1

(𝑥 − 𝑦𝑖)2

)
.

The constant 𝑏 is the leading coefficient of 𝑝.
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Proof. Since 𝑧1, . . . , 𝑧𝑟 are the zeros of 𝑝 in [0,∞) with multiplicities 𝑚1, . . . , 𝑚𝑟
we have that 𝑝(𝑥) = (𝑥 − 𝑧1)𝑚1 · · · (𝑥 − 𝑧𝑟 )𝑚𝑟 · 𝑝(𝑥) with 𝑝 ∈ R[𝑥] and 𝑝 > 0 on
[0,∞). Applying Theorem 10.1 to 𝑝 gives the assertion. ⊓⊔

Note, in the previous result we were able to factor out the zeros of 𝑝 and were only
left with 𝑝 > 0 on [0,∞) since we are working in R[𝑥]≤deg 𝑝 where all monomials
1, 𝑥, . . . , 𝑥deg 𝑝 are present. In sparse systems we are not able to factor out the zeros
since we no longer know which monomials in 𝑝 will appear.
Remark 10.3. Working in the sparse setting, i.e., in T-systems, gives us an additional
information. In (3.4) we only have 𝑝(𝑥) = 𝑥 · 𝑓 2 + 𝑔2. But this also includes that
𝑓 and 𝑔 might contain factors ((𝑥 − 𝑦𝑖)2 + 𝛿𝑖) with 𝛿𝑖 > 0, i.e., a pair of complex
conjugated zeros can be present. In Corollary 10.2 we see that this is not necessary.
The polynomials 𝑓 and 𝑔 can always be chosen such that they decompose into linear
factors having only real zeros. A similar results holds on R, see Theorem 10.7. ◦

10.2 Sparse Stieltjes Moment Problem

In Section 3.2 we have seen that Boas already investigated the sparse Stieltjes
moment problem [Boa39a]. However, the description was complicated and is even
incomplete since Boas did not had access to Karlin’s Positivstellensatz 8.1 and
therefore Theorem 10.1. We get the following complete and simple description. It
fully solves [Boa39a]. We are not aware of a reference for the following result.

Theorem 10.4 (Sparse Stieltjes Moment Problem). Let {𝛼𝑖}𝑖∈N0 ⊆ [0,∞) be such
that 𝛼0 = 0 < 𝛼1 < 𝛼2 < . . . and let F = {𝑥𝛼𝑖 }𝑖∈N0 . Then the following are
equivalent:

(i) 𝐿 : lin F → R is a [0,∞)-moment functional.
(ii) 𝐿 (𝑝) ≥ 0 for all 𝑝 ∈ lin F with 𝑝 ≥ 0.

(iii) 𝐿 (𝑝) ≥ 0 for all 𝑝 ∈ lin F with 𝑝 > 0.
(iv) 𝐿 (𝑝) ≥ 0 for all

𝑝(𝑥) =



det

(
1 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
,

det

(
𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚−2 𝑥𝛼2𝑚−1

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚−1 𝑥𝑚−1)

)
,

det

(
𝑥𝛼1 𝑥𝛼2 𝑥𝛼3 . . . 𝑥𝛼2𝑚 𝑥𝛼2𝑚+1

𝑥 (𝑥2 𝑥2) . . . (𝑥𝑚+1 𝑥𝑚+1)

)
, and

det

(
1 𝑥𝛼1 𝑥𝛼2 . . . 𝑥𝛼2𝑚−1 𝑥𝛼2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
for all 𝑚 ∈ N0 and 0 < 𝑥1 < · · · < 𝑥𝑚.
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Proof. The implications “(i) ⇒ (ii) ⇔ (iii)” are clear and “(iii) ⇔ (iv)” is Theo-
rem 10.1. It is therefore sufficient to prove “(ii) ⇒ (i)”.

We have lin F = (lin F )+ − (lin F )+, we have 1 = 𝑥𝛼0 ∈ lin F , and for any 𝑔 =∑𝑚
𝑖=0 𝑎𝑖 · 𝑥𝛼𝑖 ∈ (lin F )+ we have lim𝑥→∞

𝑔 (𝑥 )
𝑥𝛼𝑚+1 = 0, i.e., there exists a 𝑓 ∈ (lin F )+

which dominates 𝑔. Hence, lin F is an adapted space on [0,∞) and the assertion
follows from the Basic Representation Theorem 2.9. ⊓⊔

In the previous result we did needed 0 = 𝛼0 < 𝛼1 < 𝛼2 < . . . . We did not needed
𝛼𝑖 → ∞. Hence, Theorem 10.4 also includes the case sup𝑖∈N0

𝛼𝑖 < ∞.
Theorem 10.4 also holds with 𝛼0 > 0 since we can factor out 𝑥𝛼0 and therefore

determine 𝑥𝛼0 d𝜇(𝑥) instead of d𝜇(𝑥).

10.3 Sparse Algebraic Nichtnegativstellensatz on [0,∞)

For {1, 𝑥, 𝑥3} we have seen in Example 5.16 that this is not an ET-systen on [0,∞),
or on any other [0, 𝑏]. If we remove the point 𝑥 = 0 and work on (0,∞) then it is an
ET-system and even an ECT-system (Examples 5.18). For a Nichtnegativstellensatz
we therefore have to exclude zeros at 𝑥 = 0 in a sparse polynomial 𝑝 ≥ 0.

Theorem 10.5 (Sparse Algebraic Nichtnegativstellensatz on [0,∞)). Let 𝑛 ∈ N0,
𝛼0, . . . , 𝛼𝑛 ∈ [0,∞) be real numbers with 𝛼0 = 0 < 𝛼1 < · · · < 𝛼𝑛, and let
F = {𝑥𝛼𝑖 }𝑛

𝑖=0. Let 𝑓 =
∑𝑛
𝑖=0 𝑎𝑖𝑥

𝛼𝑖 ≥ 0 on [0,∞) with 𝑎𝑛 > 0 and 𝑓 (0) = 𝑎0 > 0.
Then there exist points 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛−1 ∈ [0,∞) (not necessarily distinct)
which include the zeros of 𝑓 with multiplicities and there exist constants 𝑐∗, 𝑐∗ ∈ R
such that

𝑓 = 𝑓∗ + 𝑓 ∗

with 𝑓∗, 𝑓 ∗ ∈ lin F , 𝑓∗, 𝑓 ∗ ≥ 0 on [0,∞), and the polynomials 𝑓∗ and 𝑓 ∗ are given
by

𝑓∗ (𝑥) = 𝑐∗ · det
(

1 𝑥𝛼1 . . . 𝑥𝛼𝑛

𝑥 𝑥1 . . . 𝑥𝑛

)
and 𝑓 ∗ (𝑥) = 𝑐∗ · det

(
1 𝑥𝛼1 . . . 𝑥𝛼𝑛−1

𝑥 𝑦1 . . . 𝑦𝑛−1

)
for all 𝑥 ∈ [0,∞).

Proof. See Problem 10.1. ⊓⊔

Remark 10.6. Note, if 𝑓 (0) = 𝑎0 = 0 in Theorem 10.5 then

𝑓 (𝑥) = 𝑎𝑖𝑥𝛼𝑖 + 𝑎𝑖+1𝑥
𝛼𝑖+1 + · · · + 𝑎𝑛𝑥𝛼𝑛 = 𝑥𝛼𝑖 · (𝑎𝑖 + 𝑎𝑖+1𝑥

𝛼𝑖+1−𝛼𝑖 + · · · + 𝑎𝑛𝑥𝛼𝑛−𝛼𝑖︸                                       ︷︷                                       ︸
=: 𝑓 (𝑥 )

)

where 𝑎𝑖 is the first non-zero coefficient and it fulfills 𝑎𝑖 > 0 since 𝑓 ≥ 0. Then
apply Theorem 10.5 to 𝑓 to get 𝑓 = 𝑓∗ + 𝑓 ∗ and hence 𝑓 = 𝑥𝛼𝑖 · ( 𝑓∗ + 𝑓 ∗). ◦
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10.4 Algebraic Positiv- and Nichtnegativstellensatz on R

Since we treat F = {𝑥𝑖}𝑛
𝑖=0 we need only Karlin’s Positivstellensatz 8.4 onR but not

Karlin’s Nichtnegativstellensatz 8.5 on R as we will see in the next result.

Theorem 10.7 (Algebraic Positiv- and Nichtnegativstellensatz onR, see [KS53, ] or
e.g. [KS66, p. 198, Cor. 8.1]). Let 𝑝 ∈ R[𝑥] with 𝑝 ≥ 0 onR and let 𝑧1, . . . , 𝑧𝑟 ∈ R
be the zeros of 𝑝 with algebraic multiplicities 𝑚1, . . . , 𝑚𝑟 ∈ 2N. Then there exist
pairwise distinct points {𝑥𝑖}𝑚𝑖=1, {𝑦𝑖}

𝑚−1
𝑖=1 ⊆ R with 2𝑚 = deg 𝑝 −𝑚1 − · · · −𝑚𝑟 and

−∞ < 𝑥1 < 𝑦1 < · · · < 𝑦𝑚−1 < 𝑥𝑚 < ∞

as well as constants 𝑎, 𝑏 > 0 such that

𝑝(𝑥) =
𝑟∏
𝑖=1

(𝑥 − 𝑧𝑖)𝑚𝑖 ·
(
𝑎 ·

𝑚∏
𝑖=1

(𝑥 − 𝑥𝑖)2 + 𝑏 ·
𝑚−1∏
𝑖=1

(𝑥 − 𝑦𝑖)2

)
. (10.1)

The constant 𝑎 is the leading coefficient of 𝑝.

Proof. We have 𝑝(𝑥) = (𝑥 − 𝑧1)𝑚1 · · · (𝑥 − 𝑧𝑟 )𝑚𝑟 · 𝑝(𝑥) for some 𝑝 ∈ R[𝑥] with
𝑝 > 0 on R. Applying Karlin’s Positivstellensatz 8.4 to 𝑝 gives the assertion. ⊓⊔

Like in the case on [0,∞) in Corollary 10.2 a factorization

𝑝(𝑥) = (𝑥 − 𝑧1)𝑚1 · · · (𝑥 − 𝑧𝑟 )𝑚𝑟 · 𝑝(𝑥)

is not possible in T-systems or sparse algebraic systems on R. But since we are
working in R[𝑥]≤deg 𝑝 all monomials 1, 𝑥, . . . , 𝑥deg 𝑝 are present.
Remark 10.8. Similar to Remark 10.3 we see that Theorem 10.7 gives a stronger ver-
sion of (3.2), i.e., 𝑝 = 𝑓 2+𝑔2. By applying only the Fundamental Theorem of Algebra
𝑓 and 𝑔 might contain pairs of complex conjugated zeros, see e.g. [Mar08, Prop.
1.2.1]. But by working in the T-system framework of Karlin’s Positivstellensatz 8.4
on R we see that 𝑓 and 𝑔 can be chosen to have only real zeros. ◦

On [0,∞) we have seen that for any 0 = 𝛼0 < 𝛼1 < 𝛼2 < · · · < 𝛼𝑛 we have that
F = {𝑥𝛼𝑖 }𝑛

𝑖=0 is a T-system. On R this is no longer the case.

Example 10.9. Let F = {1, 𝑥2, 𝑥4, 𝑥6, 𝑥8}. Then F on R is no T-system. Let
𝑝 ∈ lin F be non-negative on [0,∞) with zeros at 𝑥 = 1 and 2. By symmetry 𝑝 ≥ 0
on R with double zeros at 𝑥 = ±1 and ±2 which contradicts Theorem 4.22. ◦

Problems

10.1 Use Karlin’s Nichtnegativstellensatz 8.3 to prove Theorem 10.5.

10.2 Show that 𝑎 in (10.1) in Theorem 10.7 is the leading coefficient of 𝑝.
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Chapter 11
Moment Problems for continuous T-Systems on
[𝒂, 𝒃]

Long is the way and hard, that out of Hell leads up to light.

John Milton: Paradise Lost

In this chapter we demonstrate how e.g. Karlin’s Positivstellensatz 7.3 for general
T-systems on [𝑎, 𝑏] can be used to prove moment problems which do not live on the
algebraic polynomials R[𝑥].

11.1 General Moment Problems for continuous T-Systems on
[𝒂, 𝒃]

For T-system F on [𝑎, 𝑏] Karlin’s Positivstellensatz 7.3 describes all polynomials
𝑓 ∈ lin F with 𝑓 > 0.

Theorem 11.1. Let 𝑛 ∈ N, let F = { 𝑓𝑖}𝑛𝑖=0 be a continuous T-system on [𝑎, 𝑏] with
𝑎 < 𝑏. The following are equivalent:

(i) 𝐿 : lin F → R is an [𝑎, 𝑏]-moment functional.
(ii) 𝐿 ( 𝑓 ) ≥ 0 for all 𝑓 ∈ lin F such that

(a) 𝑓 ≥ 0 on [𝑎, 𝑏] and
(b) the zero set of 𝑓 has index 𝑛.

Proof. The implication (i) ⇒ (ii) is clear since 𝑓 ≥ 0. It is therefore sufficient to
prove (ii) ⇒ (i).

Since F is a continuous T-system there exists a polynomial 𝑒 ∈ lin F with 𝑒 > 0
on [𝑎, 𝑏]. Since [𝑎, 𝑏] is compact, F is continuous and finite dimensional, and there
exists a 𝑒 > 0 we have that the moment cone ((lin F )+)∗ is closed. Therefore, to
show that 𝐿 is a moment functional it is sufficient to show that 𝐿 ( 𝑓 ) ≥ 0 for all
𝑓 ∈ (lin F )+.

By Karlin’s Positivstellensatz 7.3 there are 𝑒∗, 𝑒∗ ∈ lin F with 𝑒∗, 𝑒∗ ≥ 0 and the
zero sets of 𝑒∗ and of 𝑒∗ have index 𝑛. Hence, 𝐿 (𝑒) = 𝐿 (𝑒∗) + 𝐿 (𝑒∗) ≥ 0.

Let 𝑓 ∈ (lin F )+ and 𝜀 > 0. Then 𝑓𝜀 = 𝑓 + 𝜀 · 𝑒 > 0 on [𝑎, 𝑏], i.e., by Karlin’s
Positivstellensatz 7.3 there exist ( 𝑓𝜀)∗, ( 𝑓𝜀)∗ ∈ (lin F )+ each with zero sets of index
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𝑛. Assumption (ii) then implies 𝐿 ( 𝑓 +𝜀 · 𝑒) = 𝐿 (( 𝑓𝜀)∗) + 𝐿 (( 𝑓𝜀)∗) ≥ 0 for all 𝜀 > 0,
i.e., 𝐿 ( 𝑓 ) ≥ 0. That proves the assertion. ⊓⊔

Note, that a continuous T-system on [𝑎, 𝑏] is always an adapted space. Addition-
ally, the use of Basic Representation Theorem 2.9 is not necessary since we only
need to check in this case 𝐿 ∈ ((lin F )+)∗ since the moment cone is ((lin F )+)∗ and
hence it is closed.

If in the previous theorem we additionally have that F is an ET-system then we
can write down 𝑓∗ and 𝑓 ∗ explicitly in the similar way as in Theorem 9.6.

Theorem 11.2. Let 𝑛 ∈ N, let F = { 𝑓𝑖}𝑛𝑖=0 be an ET-system on [𝑎, 𝑏] with 𝑎 < 𝑏.
The following are equivalent:

(i) 𝐿 : lin F → R is a moment functional.
(ii) 𝐿 ( 𝑓 ) ≥ 0 holds for all

𝑓 (𝑥) :=


det

(
𝑓0 𝑓1 𝑓2 . . . 𝑓2𝑚−1 𝑓2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
− det

(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓2𝑚−2 𝑓2𝑚−1 𝑓2𝑚

𝑥 𝑎 (𝑥1 𝑥1) . . . (𝑥𝑚−1 𝑥𝑚−1) 𝑏

) if 𝑛 = 2𝑚

and

𝑓 (𝑥) :=


− det

(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓2𝑚 𝑓2𝑚+1

𝑥 𝑎 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
det

(
𝑓0 𝑓1 𝑓2 . . . 𝑓2𝑚−1 𝑓2𝑚 𝑓2𝑚+1

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚) 𝑏

) if 𝑛 = 2𝑚 + 1

and all 𝑥1, . . . , 𝑥𝑚 with 𝑎 < 𝑥1 < · · · < 𝑥𝑚 < 𝑏.

Proof. Follows from Theorem 11.1 with Theorem 5.3. ⊓⊔

11.2 A Non-Polynomial Example

In Example 4.18 we have seen that

F =

{
1

𝑥 + 𝛼0
,

1
𝑥 + 𝛼1

, . . . ,
1

𝑥 + 𝛼𝑛

}
with 𝑛 ∈ N and 𝛼0 < 𝛼1 < · · · < 𝛼𝑛 reals is a continuous T-system on any
[𝑎, 𝑏] with −𝛼0 < 𝑎 < 𝑏, see Problem 4.5 for the proof. But in the proof of
Example 4.18 we actually showed that this F is an ET-system since we multiplied
with (𝑥 + 𝛼0) · · · (𝑥 + 𝛼𝑛) which has no zeros on [𝑎, 𝑏] and hence the multiplicities
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of the zeros do not change. Multiplicity restriction from the fundamental theorem of
algebra then shows that F is an ET-system.

Corollary 11.3. Let 𝑛 ∈ N and 𝛼0 < 𝛼1 < · · · < 𝛼𝑛 be reals. Then

F =

{
1

𝑥 + 𝛼0
,

1
𝑥 + 𝛼1

, . . . ,
1

𝑥 + 𝛼𝑛

}
is an ET-system on any [𝑎, 𝑏] with −𝛼0 < 𝑎 < 𝑏.

From Theorem 11.2 and Corollary 11.3 we therefore get the following.

Corollary 11.4. Let 𝑛 ∈ N, let 𝛼0 < 𝛼1 < · · · < 𝛼𝑛 be reals, and let

F =

{
𝑓0 (𝑥) =

1
𝑥 + 𝛼0

, 𝑓1 (𝑥) =
1

𝑥 + 𝛼1
, . . . , 𝑓𝑛 (𝑥) =

1
𝑥 + 𝛼𝑛

}
on [𝑎, 𝑏] with −𝛼0 < 𝑎 < 𝑏. Then the following are equivalent:

(i) 𝐿 : lin F → R is a [𝑎, 𝑏]-moment functional.
(ii) 𝐿 ( 𝑓 ) ≥ 0 holds for all

𝑓 (𝑥) :=


det

(
𝑓0 𝑓1 𝑓2 . . . 𝑓2𝑚−1 𝑓2𝑚

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
− det

(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓2𝑚−2 𝑓2𝑚−1 𝑓2𝑚

𝑥 𝑎 (𝑥1 𝑥1) . . . (𝑥𝑚−1 𝑥𝑚−1) 𝑏

) if 𝑛 = 2𝑚

and

𝑓 (𝑥) :=


− det

(
𝑓0 𝑓1 𝑓2 𝑓3 . . . 𝑓2𝑚 𝑓2𝑚+1

𝑥 𝑎 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚)

)
det

(
𝑓0 𝑓1 𝑓2 . . . 𝑓2𝑚−1 𝑓2𝑚 𝑓2𝑚+1

𝑥 (𝑥1 𝑥1) . . . (𝑥𝑚 𝑥𝑚) 𝑏

) if 𝑛 = 2𝑚 + 1

and all 𝑥1, . . . , 𝑥𝑚 with 𝑎 < 𝑥1 < · · · < 𝑥𝑚 < 𝑏.

In a similar way many other T-system moment problems can be proven from
Theorem 11.1.





Chapter 12
Polynomials of Best Approximation and
Optimization over Linear Functionals

The rest is silence.

William Shakespeare: Hamlet (Act 5, Scene 2)

This last chapter is devoted to best approximation polynomials and optimization over
linear functionals.

We started in Chapter 1 with moments and moment functionals, went to the theory
of T-systems in Part II, proved Karlin’s Theorems in Part III, and applied them to
algebraic polynomials in Part IV. Now we finish our lecture by closing the circle. We
apply the previous results to best approximation in Section 12.1 and to optimization
over linear (moment) functionals in Section 12.2.

12.1 Polynomials of Best Approximation

A classical question is:
How to approximate a given function 𝑓 ∈ C([𝑎, 𝑏],R) in the sup-norm by a finite linear
combination

∑𝑛
𝑖=0 𝑎𝑖 𝑓𝑖 of some given 𝑓0, . . . , 𝑓𝑛 ∈ C([𝑎, 𝑏],R)?

Definition 12.1. Let 𝑛 ∈ N0, let 𝑓 , 𝑓0, . . . , 𝑓𝑛 ∈ C([𝑎, 𝑏],R), and let F := { 𝑓𝑖}𝑛𝑖=0.
The polynomial 𝑓 ∈ lin F which solves

min
𝑎0 ,...,𝑎𝑛






 𝑓 − 𝑛∑︁
𝑖=0

𝑎𝑖 𝑓𝑖







∞

(12.1)

is called the polynomial of best approximation.

Approximations (12.1) with the sup-norm are called Tchebycheff approximations.
The connection between polynomials of best approximation and T-systems is

revealed in the following result.

Theorem 12.2 (see [Haa18], [Ber26]; or e.g. [Ach56, p. 74, §48], [KS66, p. 280,
Thm. 1.1]). Let 𝑛 ∈ N0, let 𝑎, 𝑏 ∈ Rwith 𝑎 < 𝑏, and let F := { 𝑓𝑖}𝑛𝑖=0 ⊆ C([𝑎, 𝑏],R)
be a family of continuous functions. The following hold:

(i) The following are equivalent:
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(a) The polynomial minimizing

min
𝑎0 ,...,𝑎𝑛






 𝑓 − 𝑛∑︁
𝑖=0

𝑎𝑖 𝑓𝑖







∞

(12.2)

is uniquely determined for every 𝑓 ∈ C([𝑎, 𝑏],R).
(b) The family F is a continuous T-system on [𝑎, 𝑏].

(ii) If F is a T-system then for each 𝑓 ∈ C([𝑎, 𝑏],R) the unique polynomial

𝑓 =

𝑛∑︁
𝑖=0

𝑎
𝑖
𝑓𝑖

minimizing (12.2) is characterized by the property that there exist 𝑛 + 2 points

𝑎 ≤ 𝑥1 < 𝑥2 < · · · < 𝑥𝑛+2 ≤ 𝑏

such that

(−1)𝑖 · 𝛿 · ( 𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖)) = max
𝑎≤𝑥≤𝑏

��� 𝑓 (𝑥) − 𝑓 (𝑥)
���

holds for all 𝑖 = 1, 2, . . . , 𝑛 + 2 with 𝛿 = +1 or −1.

Statement (i) of the previous theorem is essentially due to A. Haar [Haa18]. The
following proof significantly differs from Haar’s proof and it is more general. It is
taken from [KS66, pp. 284–286], see also [Ach56, pp. 75–76].

Proof. (a) ⇒ (b): We prove ¬(b) ⇒ ¬(a).
Assume F is not a T-system. There exist 𝑛 + 1 distinct points 𝑎 ≤ 𝑥0 < 𝑥1 <

· · · < 𝑥𝑛 ≤ 𝑏 such that
det

(
𝑓𝑖 (𝑥 𝑗 )

)𝑛
𝑖, 𝑗=0 = 0. (12.3)

Hence, there exist real coefficients 𝑐0, 𝑐1, . . . , 𝑐𝑛 with
∑𝑛
𝑖=0 𝑐

2
𝑖
> 0 with

∑𝑛
𝑖=0 𝑐𝑖 𝑓 𝑗 (𝑥𝑖) =

0 for all 𝑗 = 0, . . . , 𝑛. That implies

𝑛∑︁
𝑖=0

𝑐𝑖 𝑝(𝑥𝑖) = 0 (12.4)

for all 𝑝 ∈ lin F .
The relation (12.3) also implies the existence of a non-trivial polynomial 𝑝 =∑𝑛
𝑖=0 𝑏𝑖 𝑓𝑖 ∈ lin F which vanishes at the points 𝑥0, 𝑥1, . . . , 𝑥𝑛.
Let 𝑔 ∈ C([𝑎, 𝑏],R) be such that ∥𝑔∥∞ ≤ 1 and

𝑔(𝑥𝑖) =
𝑐𝑖

|𝑐𝑖 |

for all 𝑖 = 0, 1, . . . , 𝑛 with 𝑐𝑖 ≠ 0.
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Let 𝜆 > 0 be such that ∥𝜆𝑝∥∞ < 1 then 𝑓 := 𝑔 · (1 − |𝜆𝑝 |) has the same signs at
the points 𝑥𝑖 with 𝑐𝑖 ≠ 0 as 𝑔.

We will now construct an infinite number of polynomials of the same minimum
deviation from 𝑓 .

If 




 𝑓 − 𝑛∑︁
𝑖=0

𝑎𝑖 𝑓𝑖







∞

< 1

for some 𝑎0, 𝑎1, . . . , 𝑎𝑛 then

−1 < 𝑔(𝑥 𝑗 ) · (1 − |𝜆𝑝(𝑥 𝑗 ) |) −
𝑛∑︁
𝑖=0

𝑎𝑖 𝑓𝑖 (𝑥 𝑗 ) < 1

for all 𝑗 = 0, 1, . . . , 𝑛 which reduces to

−1 < 𝑔(𝑥 𝑗 ) −
𝑛∑︁
𝑖=0

𝑎𝑖 𝑓𝑖 (𝑥 𝑗 ) < 1

for all 𝑗 = 0, 1, . . . , 𝑛. Hence, if 𝑐 𝑗 ≠ 0 the value of
∑𝑛
𝑖=0 𝑎𝑖 𝑓𝑖 (𝑥 𝑗 ) has the sign of the

𝑐 𝑗 so that
∑𝑛
𝑗=0 𝑐 𝑗

∑𝑛
𝑖=0 𝑎𝑖 𝑓𝑖 (𝑥 𝑗 ) ≠ 0 which contradicts (12.4). Therefore,




 𝑓 − 𝑛∑︁

𝑖=0
𝑎𝑖 𝑓𝑖







∞

≥ 1.

If now |𝛿 | < 1 then

| 𝑓 (𝑥) − 𝛿𝜆𝑝(𝑥) | ≤ | 𝑓 (𝑥) | + |𝛿𝜆𝑝(𝑥) |
≤ |𝑔(𝑥) | · (1 − |𝜆𝑝(𝑥)) + |𝛿𝜆𝑝(𝑥) |
≤ 1 − (1 − |𝛿 |) · |𝜆𝑝(𝑥) |
≤ 1

so that 𝛿𝜆𝑝 minimizes the distance to 𝑓 independent of 𝛿 ∈ (−1, 1). Hence, we
proved ¬(a).

We now prove (ii) which will also establish (b) ⇒ (a). Let F be a T-system.
At least one minimal polynomial exists since lin F is finite dimensional. Assume
𝑔 =

∑𝑛
𝑖=0 𝑏𝑖 𝑓𝑖 fulfills

∥ 𝑓 − 𝑔∥∞ = 𝑚 = min
𝑎0 ,...,𝑎𝑛






 𝑓 − 𝑛∑︁
𝑖=0

𝑎𝑖 𝑓𝑖







∞

and 𝑓 − 𝑔 takes on the values ±𝑚 alternatively at only 𝑘 ≤ 𝑛 + 1 points. We suppose
for definiteness that 𝑓 − 𝑔 assumes the values +𝑚 before it takes the value −𝑚. In
this case there exist 𝑘 − 1 points
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𝑎 ≤ 𝑦1 < · · · < 𝑦𝑘−1 ≤ 𝑏

such that
𝑓 (𝑦𝑖) − 𝑔(𝑦𝑖) = 0

for all 𝑖 = 1, 2, . . . , 𝑘 − 1 and for some 𝑑 > 0 we have

𝑚 ≥ 𝑓 − 𝑔 ≥ −𝑚 + 𝑑 on [𝑎, 𝑦1] ∪ [𝑦2, 𝑦3] ∪ . . .
𝑚 − 𝑑 ≥ 𝑓 − 𝑔 ≥ −𝑚 on [𝑦1, 𝑦2] ∪ [𝑦3, 𝑦4] ∪ .

By Theorem 4.30 and Remark 4.27 there exists a polynomial ℎ whose only zeros on
the open interval (𝑎, 𝑏) are the nodal zeros 𝑦1, . . . , 𝑦𝑘−1 and additionally ℎ ≤ 0 on
[𝑎, 𝑦1]. Let 𝛿 > 0 be such that |𝛿ℎ| ≤ 𝑑/2 then

| 𝑓 − 𝑔 + 𝛿ℎ| < 𝑚 (12.5)

on (𝑎, 𝑏).
Equality in (12.5) is possible at the end point 𝑎 only if 𝑓 (𝑎) − 𝑔(𝑎) = 𝑚 and

ℎ(𝑎) = 0 and at 𝑏 only if | 𝑓 (𝑎) − 𝑔(𝑏) | = 𝑚 and ℎ(𝑏) = 0. To repair the situation at
the points 𝑎 and 𝑏 let ℎ̃ be such that ℎ̃ · ( 𝑓 − 𝑔) > 0 at 𝑎 and 𝑏. Then for sufficient
small 𝜂 we have

| 𝑓 − 𝑔 + 𝛿ℎ − 𝜂ℎ̃| < 𝑚

on [𝑎, 𝑏]. Hence, by continuity on the compact interval [𝑎, 𝑏] we have

min
𝑎0 ,...,𝑎𝑛






 𝑓 − 𝑛∑︁
𝑖=0

𝑎𝑖 𝑓𝑖







∞

< 𝑚

contradicting the fact that 𝑚 is the minimum deviation. That proves (ii) including
uniqueness in (i). ⊓⊔

In the previous theorem we have seen the close connection between the best
approximation polynomials from the minimum problem (12.2) and T-systems. The
next result shows that the connection is even closer, i.e., the solution of (12.2) is
connected to the Snake Theorem 7.4.

Theorem 12.3 (see e.g. [KS66, p. 283, Thm. 2.1]). Let 𝑛 ∈ N0 and let 𝑓0, . . . , 𝑓𝑛, 𝑓 ∈
C([𝑎, 𝑏],R) be such that { 𝑓0, . . . , 𝑓𝑛} and { 𝑓0, . . . , 𝑓𝑛, 𝑓 } are continuous T-systems
on [𝑎, 𝑏] with 𝑎 < 𝑏. Let

𝑓 ∗ = 𝑐 · 𝑓 +
𝑛∑︁
𝑖=0

𝑐𝑖 · 𝑓𝑖

be the 𝑓 ∗ from the Snake Theorem 7.4 with 𝑔1 = −1 and 𝑔2 = 1, i.e., 𝑓 ∗ is uniquely
characterized by the following conditions:

(a) −1 ≤ 𝑓 ∗ ≤ 1 on [𝑎, 𝑏], and
(b) there exist 𝑛 + 2 points 𝑥1 < 𝑥2 < · · · < 𝑥𝑛+2 in [𝑎, 𝑏] such that
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𝑓 ∗ (𝑥𝑖) = (−1)𝑛+1−𝑖

for all 𝑖 = 1, . . . , 𝑛 + 2.

Then 𝑐 ≠ 0 and the polynomial

𝑓 := −1
𝑐
·
𝑛∑︁
𝑖=0

𝑐𝑖 𝑓𝑖

is the unique minimizer of

𝑑 = min
𝑎0 ,...,𝑎𝑛






 𝑓 − 𝑛∑︁
𝑖=0

𝑎𝑖 𝑓𝑖







∞

and the minimum deviation is 𝑑 = |𝑐 |−1.

The proof is taken from [KS66, pp. 283–284].

Proof. The coefficient 𝑐 can not be zero. Otherwise the polynomial
∑𝑛
𝑖=0 𝑐𝑖 𝑓𝑖 van-

ishes at 𝑛+1 points in the T-system { 𝑓0, . . . , 𝑓𝑛} by (b) and would therefore be equal
to zero by Lemma 4.5.

From (a) we get 




 𝑓 −
(
− 1
𝑑

𝑛∑︁
𝑖=0

𝑐𝑖 𝑓𝑖

) 





∞

≤ 1
|𝑑 | .

Since 𝑓 fulfills (b) we get from Theorem 12.2 (ii) uniqueness of 𝑓 and 𝑑 = |𝑐 |−1. ⊓⊔

Finding approximations is also done with respect to the L 𝑝-norms

min
𝑎0 ,...,𝑎𝑛

∫ ����� 𝑓 (𝑥) − 𝑛∑︁
𝑖=0

𝑎𝑖 𝑓𝑖 (𝑥)
�����𝑝 d𝜇(𝑥) (12.6)

with a fixed measure 𝜇 and 𝑝 ≥ 1. For 𝑝 = 2 this leads to the well-studied orthogonal
polynomials, a special branch of the theory of moments.

For 𝑝 = 1 in (12.6) this also is connected to T-systems. D. Jackson [Jac24] showed
that if F = { 𝑓0, . . . , 𝑓𝑛} is a T-system then the best approximation of (12.6) is unique,
see also [Ach56, p. 77].

12.2 Optimization over Linear Functionals

In optimization one often encounters the problem of having only a linear functional
𝐿 : V → R, e.g. a moment functional, and one wants to minimize 𝐿 ( 𝑓 ) over V+.
By removing the dependency on the scaling of 𝑓 we get the following result.
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Theorem 12.4 (see e.g. [KS66, p. 312, Thm. 9.1]). Let 𝑛 ∈ N0, let F = { 𝑓𝑖}𝑛𝑖=0 be an
ET-system on [𝑎, 𝑏] with 𝑎 < 𝑏, and let 𝐿, 𝑆 : lin F → R be two linear functionals
such that 𝑆 is strictly positive on (lin F )+, i.e., 𝑆( 𝑓 ) > 0 for all 𝑓 ∈ lin F \ {0} with
𝑓 ≥ 0. Then

min
𝑓 ∈ (lin F)+\{0}

𝐿 ( 𝑓 )
𝑆( 𝑓 ) and max

𝑓 ∈ (lin F)+\{0}

𝐿 ( 𝑓 )
𝑆( 𝑓 ) (12.7)

are attained at non-negative polynomials possessing 𝑛 zeros counting multiplicities.

The proof is taken from [KS66, p. 312].

Proof. Since lin F is finite dimensional the values in (12.7) are attained.
It is sufficient to prove the statement for the maximum. But maximizing 𝐿 ( 𝑓 )

𝑆 ( 𝑓 )
over (lin F )+ \ {0} is equivalent to maximize 𝐿 ( 𝑓 ) over 𝑓 ∈ (lin F )+ \ {0} with
𝑆( 𝑓 ) = 1.

Let 𝑓 ≥ 0 be such that 𝑆( 𝑓 ) = 1 and suppose 𝑓 has at most 𝑛 − 1 zeros
counting multiplicities. Then by Karlin’s Nichtnegativstellensatz 7.6 there is a unique
decomposition 𝑓 = 𝑓∗ + 𝑓 ∗ where 𝑓∗ and 𝑓 ∗ differ, are non-negative, and both have
𝑛 zeros counting multiplicities. Set 𝛼 := 𝑆( 𝑓∗) and 𝛽 := 𝑆( 𝑓 ∗). Then 𝛼, 𝛽 > 0 since
𝑆 is strictly positive and 𝛼 + 𝛽 = 𝑆( 𝑓∗) + 𝑆( 𝑓 ∗) = 𝑆( 𝑓 ) = 1. Then

𝑓 = 𝛼 · 𝑓∗
𝛼

+ 𝛽 · 𝑓
∗

𝛽

and by linearity

𝐿 ( 𝑓 ) ≤ max
(
𝐿 ( 𝑓∗)
𝛼

,
𝐿 ( 𝑓 ∗)
𝛽

)
which proves the statement. ⊓⊔

More results on best approximation and optimization over linear functionals can
already be found in [Ber26], [Ach56], and [KS66]. Let alone the enormous literature
after that.
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Solutions

Problems of Chapter 1

1.1 The Stone–Weierstrass Theorem 0.3 states that for a compact set 𝐾 ⊂ R𝑛 the
polynomials R[𝑥1, . . . , 𝑥𝑛] are dense in C(𝐾,R) with respect to the sup-norm. Let
𝐴 ∈ 𝔅(𝐾) be a Borel measurable set, let 𝜀 > 0, and let 𝜇1 and 𝜇2 be two representing
measures of 𝐿. Set 𝐴𝛿 := (𝐴 + 𝐵𝛿 (0)) ∩ 𝐾 for all 𝛿 > 0. Then for any 𝜀 > 0 there
exists a 𝛿 = 𝛿(𝜀) > 0 such that 𝜇1 (𝐴𝛿 \ 𝐴), 𝜇2 (𝐴𝛿 \ 𝐴) < 𝜀.

By Urysohn’s Lemma 0.2 there exists a 𝜑𝜀 ∈ C(𝐾, [0, 1]) such that

𝜑𝜀 (𝑥) =
{

1 for 𝑥 ∈ 𝐴
0 for 𝑥 ∈ 𝐾 \ 𝐴𝜀

and since R[𝑥1, . . . , 𝑥𝑛] is dense in C(𝐾,R) there exists a family of polynomials
(𝑝𝜀
𝑖
)𝑖∈N ⊆ R[𝑥1, . . . , 𝑥𝑛] such that

∥𝑝𝜀𝑖 − 𝜑𝜀 ∥∞
𝑖→∞−−−−→ 0 and hence

∫
𝐾

𝑝𝜀𝑖 (𝑥) d𝜇 𝑗 (𝑥)
𝑖→∞−−−−→

∫
𝐾

𝜑𝜀 (𝑥) d𝜇 𝑗 (𝑥)

for 𝑗 = 1, 2. Then we have

𝜇1 (𝐴) = lim
𝜀↘0

∫
𝐾

𝜑𝜀 (𝑥) d𝜇1 (𝑥)

= lim
𝜀↘0

lim
𝑖→∞

∫
𝐾

𝑝𝜀𝑖 (𝑥) d𝜇1 (𝑥)

= lim
𝜀↘0

lim
𝑖→∞

𝐿 (𝑝𝜀𝑖 )

= lim
𝜀↘0

lim
𝑖→∞

∫
𝐾

𝑝𝜀𝑖 (𝑥) d𝜇2 (𝑥)

= lim
𝜀↘0

∫
𝐾

𝜑𝜀 (𝑥) d𝜇2 (𝑥) = 𝜇2 (𝐴).

129
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Since 𝐴 ∈ 𝔅(𝐾) was arbitrary we have 𝜇1 = 𝜇2, i.e., 𝐿 has a unique representing
measure and is therefore determinate.

1.2 Proof of Corollary 1.3
Let 𝜇1, 𝜇2 ∈ M(𝐿) and 𝜆 ∈ [0, 1]. Then∫

𝑝(𝑥) d[𝜆𝜇1 + (1 − 𝜆)𝜇2] (𝑥) = 𝜆
∫

𝑝(𝑥) d𝜇1 (𝑥) + (1 − 𝜆)
∫

𝑝(𝑥) d𝜇2 (𝑥)

= 𝜆𝐿(𝑝) + (1 − 𝜆)𝐿 (𝑝)
= 𝐿 (𝑝)

and hence 𝜆𝜇1 + (1 − 𝜆)𝜇2 ∈ M(𝐿) which proves convexity.

1.3 Proof of Corollary 1.10
Let 𝜇0, 𝜇1 ∈ M(𝐿) with 𝜇0 ≠ 𝜇1, i.e., there exists a 𝐴 ∈ 𝔄 such that 𝜇0 (𝐴) ≠ 𝜇1 (𝐴)
and without loss of generality we have 𝜇0 (𝐴) < 𝜇1 (𝐴). Hence, for all 𝜆 ∈ [0, 1] we
set 𝜇𝜆 := 𝜆𝜇1 + (1 − 𝜆)𝜇0 and we have

𝜇𝜆0 (𝐴) < 𝜇𝜆1 (𝐴)

for all 0 ≤ 𝜆0 < 𝜆1 ≤ 1 which proves that 𝜇𝜆0 ≠ 𝜇𝜆1 for all 𝜆0 ≠ 𝜆1. Hence, we have
at least | [0, 1] | = |R| many representing measures for 𝐿.

Problems of Chapter 2

2.1 Proof of Lemma 2.1
The proof is taken from [Cho69, Vol. 2, p. 268].

(i)⇒ (ii): If 𝐹+𝐶 is a vector space then−(𝐹+𝐶) = (𝐹+𝐶) and−(𝐹+𝐶) = 𝐹−𝐶
since −𝐹 = 𝐹.

(ii) ⇒ (iii): If 𝑥 ∈ 𝐹 + 𝐶, i.e., 𝑥 = 𝑦′ + 𝑧 for some 𝑦′ ∈ 𝐹 and 𝑧 ∈ 𝐶, then 𝑥 ≥ 𝑦′.
Similarly, if 𝑥 = 𝑦 − 𝑤 then 𝑦 ≥ 𝑥.

(iii) ⇒ (i): First note that 𝐹 + 𝐶 is a convex cone. So if suffices to show that
𝐹 + 𝐶 = −(𝐹 + 𝐶), i.e., 𝐹 + 𝐶 = 𝐹 − 𝐶. But if 𝑥 ∈ 𝐹 + 𝐶 and 𝑥 ≤ 𝑦 then 𝑥 = 𝑦 − 𝑧
for some 𝑧 ∈ 𝐶, or 𝑥 ∈ 𝐹 −𝐶. Similarly, if 𝑥 ∈ 𝐹 −𝐶 and 𝑥 = 𝑦′ +𝑤 for some 𝑤 ∈ 𝐶
then 𝑥 ∈ 𝐹 + 𝐶.

2.2 Proof of Lemma 2.6
(i) ⇒ (ii): Set 𝐾𝜀 = supp ℎ𝜀 .
(ii) ⇒ (iii): Chose by Urysohn’s Lemma 0.2 a 𝜂𝜀 ∈ C𝑐 (X,R) with 𝜂𝜀 |𝐾𝜀

= 1.
(iii) ⇒ (i): Take ℎ𝜀 = 𝜂𝜀 · 𝑔 ∈ C𝑐 (X,R).

2.3 Since X is compact for every 𝑓 ∈ 𝐸 we have 𝑚 𝑓 := min𝑥∈X 𝑓 (𝑥) > −∞ and
𝑀 𝑓 := max𝑥∈X 𝑓 (𝑥) < ∞, especially for 𝑓 = 𝑒 > 0 we have 𝑚𝑒 > 0. Then for every
𝑓 there exists a 𝑑 𝑓 > 0 such that 𝑓 = ( 𝑓 + 𝑑 𝑓 𝑒) − 𝑑 𝑓 𝑒 such that 𝑓 + 𝑑 𝑓 𝑒, 𝑑 𝑓 𝑒 ∈ 𝐸+
and hence 𝐸 = 𝐸+ − 𝐸+ proving (i) in Definition 2.7.
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Since 𝑒 > 0 we also have (ii) in Definition 2.7.
For (iii) in Definition 2.7 it is sufficient to note that X is compact, i.e., for every

𝑔 there is a 𝑐𝑔 > 0 such that 𝑔 ≤ 𝑐𝑔𝑒.

2.4 Let 𝐸 = R[𝑥1, . . . , 𝑥𝑛] on X. Then (i) 𝐸 = 𝐸+ − 𝐸+ follows immediately from
the fact that for every 𝑓 ∈ 𝐸 there is a 𝑔 ∈ 𝐸+ such that 𝑓 = 𝑓 +𝑔−𝑔 with 𝑓 +𝑔 ∈ 𝐸+.

For (ii) we take 𝑓 = 1 > 0 on X.
For (iii) take the 𝑔 from (i).

2.5 Since 𝐸 is finite dimensional we can equip it with a norm, e.g. the 𝑙2-norm in the
coefficients of 𝑓 . Assume X is not compact then there exists an unbounded sequence
(𝑥𝑖)𝑖∈N0 and a 𝑓 ∈ 𝐸 with ∥ 𝑓 ∥ ≤ 1 such that ( 𝑓 (𝑥𝑖))𝑖∈N0 grows faster than any
other (𝑔(𝑥𝑖))𝑖∈N0 . Hence, 𝑓 can not be dominated by any 𝑔.

2.6 Proof of Lemma 2.8
Since 𝐾 = supp 𝑔 is compact and 𝐸 is an adapted space, i.e., there exists a 𝑓 ∈ 𝐸+
with 𝑓 > 0 we have that min𝑥∈𝐾 𝑓 (𝑥) > 0 and hence there exists a 𝑐 > 0 such that
𝑐 𝑓 > 𝑔 on 𝐾 and hence on all X.

Problems of Chapter 3

3.1 Proof of Stieltjes’ Theorem 3.1
We have (iii) ⇔ (iv) ⇔ (v) by the definition of the Hankel matrix and also (i) ⇒ (ii)
⇒ (iii). Additionally, we have (iii) ⇒ (ii) by (3.4) since 𝐿 (𝑝) = 𝐿 ( 𝑓 2) + 𝐿 (𝑥𝑔2) ≥ 0.
At last (ii) ⇒ (i) holds by the Basic Representation Theorem 2.9 since R[𝑥] on
[0,∞) is an adapted space.

3.2 Proof of Hamburger’s Theorem 3.2
We have (i) ⇒ (ii) ⇒ (iii) and additionally (iii) ⇔ (iv) ⇔ (v) by the definition
of the Hankel matrix. The implication (iii) ⇒ (ii) follows from Equation (3.2) by
𝐿 (𝑝) = 𝐿 ( 𝑓 2 + 𝑔2) ≥ 0. At last (ii) ⇒ (i) holds by the Basic Representation
Theorem 2.9 since R[𝑥] on R is an adapted space.

3.3 Proof of Hausdorff’s Theorem 3.3
We have (i) ⇒ (ii) ⇒ (iii) and additionally (iii) ⇔ (iv) ⇔ (v) by the definition of the
Hankel matrix. The implication (iii) ⇒ (ii) follows from (3.9) since it is sufficient
to look only at 𝑓 (𝑥)2 + 𝑥𝑔(𝑥)2 + (1 − 𝑥)ℎ(𝑥)2. At last (ii) ⇒ (i) holds by the Basic
Representation Theorem 2.9 since R[𝑥] on [0, 1] is an adapted space.

3.4 Proof of Haviland’s Theorem 3.4
Since (i) ⇒ (ii) is clear it is sufficient to show (ii) ⇒ (i). But since 𝐸 = R[𝑥1, . . . , 𝑥𝑛]
on 𝐾 , is an adapted space (see Problem 2.4) and since 𝐸+ = Pos(𝐾) by definition
the Basic Representation Theorem 2.9 applies and gives the assertion.
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3.5 Proof of Corollary 3.6
We have that (ii) ⇒ (i) is clear since 𝑥𝑘 · (1 − 𝑥)𝑙 > 0 on (0, 1) and at least one
𝑐𝑘′ ,𝑙′ > 0. It remains to prove (i) ⇒ (ii).

Let 𝑓 ∈ R[𝑥] \ {0} with 𝑓 > 0 on (0, 1) then we can write 𝑓 as

𝑓 (𝑥) = 𝑥𝑝 · (1 − 𝑥)𝑞 · 𝑓 (𝑥)

with 𝑓 ∈ R[𝑥], 𝑓 > 0 on [0, 1], and 𝑝, 𝑞 ∈ N0, i.e., by the fundamental theorem
of algebra we can factor out the zeros at 𝑥 = 0 and at 𝑥 = 1. Applying Bernstein’s
Theorem 3.5 (ii) to 𝑓 then gives the assertion.

3.6 Proof of Lemma 3.9
Since the moment cone SF and the hyperplane 𝐻 are convex we have that SF ∩𝐻 is
a convex cone, i.e., it is a moment cone and there exists a family G ⊊ lin F of 𝑚 < 𝑛

elements which spans SF ∩ 𝐻. It is sufficient to show that G lives on (Y,𝔄 |Y) for
some Y ⊆ X.

For the hyperplane 𝐻 there exists a function ℎ ∈ lin F such that 𝐿𝑠 (ℎ) ≥ 0 for
all 𝑠 ∈ SF . Note, that N = ∩𝑘∈N{𝑥 ∈ X | 𝑓1 (𝑥)2 + · · · + 𝑓𝑛 (𝑥)2 ≥ 𝑘} has measure
zero for any representing measure 𝜇𝑠 on X of a moment sequence 𝑠 ∈ SF since the
moments are finite, i.e., the 𝑓𝑖 are 𝜇𝑠-integrable. Without loss of generality we can
therefore work on X \ N . Hence, all 𝛿𝑥 with 𝑥 ∈ X \ N are moment measures and
𝐿𝑠 (ℎ) ≥ 0 implies ℎ ≥ 0 on X \ N .

Then 𝑠 ∈ SF ∩ 𝐻 ⇔ 𝐿𝑠 (ℎ) = 0 implies that all representing measures 𝜇 of all
𝑠 ∈ SF ∩ 𝐻 have the support in Y := {𝑥 ∈ X \ N | ℎ(𝑥) = 0}.

3.7 Let F = { 𝑓1, . . . , 𝑓𝑛} be measurable functions on (X,𝔄) which are not neces-
sarily bounded. Set

𝐼 :=
⋂
𝑘∈N

{𝑥 ∈ X | | 𝑓𝑖 (𝑥) | > 𝑘 for all 𝑖 = 1, . . . , 𝑛}.

Then 𝐼 is measurable. Let 𝑠 be a moment sequence with representing measure 𝜇.
Since all 𝑓𝑖 are 𝜇-measurable we have 𝜇(𝐼) = 0. Therefore, by working on X \ 𝐼 we
can assume without loss of generality that | 𝑓𝑖 (𝑥) | < ∞ for all 𝑥 ∈ X.

Define G = {𝑔1, . . . , 𝑔𝑛} with 𝑔𝑖 := 𝑔𝑖
𝑓

and 𝑓 := 1 + ∑𝑛
𝑖=1 𝑓

2
𝑖

.
At first we note that from∫

X
𝑓𝑖 (𝑥) d𝜇(𝑥) =

∫
X
𝑔𝑖 (𝑥) · 𝑓 (𝑥) d𝜇 =

∫
X
𝑔𝑖 (𝑥) d𝜈(𝑥), (S.1)

we have that every sequence 𝑠 = (𝑠1, . . . , 𝑠𝑛) is a moment sequence with respect to
G if and only if it is moment sequence with respect to F .

Since all 𝑔𝑖 are bounded we have by Rosenbloom’s Theorem that there is a 𝑘-
atomic representing measure 𝜈 =

∑𝑘
𝑖=1 𝑐𝑖 ·𝛿𝑥𝑖 which represents the moment sequence

𝑠. Then by (S.1) we find that 𝜇 =
∑𝑘
𝑖=1 𝑐𝑖 · 𝑓 (𝑥𝑖)−1 · 𝛿𝑥𝑖 is a representing measure of

𝑠 with respect to F which proves the statement.
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Problems of Chapter 4

4.1 Proof of Corollary 4.3
Let 𝑓 ∈ lin F . Then 𝑓 has at most 𝑛 zeros in X and hence 𝑓 |Y has at most 𝑛 zeros
in Y ⊂ X. Since for any 𝑔 ∈ lin G there is a 𝑓 ∈ lin F such that 𝑔 = 𝑓 |Y we have
the assertion.

4.2 Proof of Corollary 4.8
Let 𝑤0, . . . , 𝑤𝑛 ∈ W be pairwise distinct. Since 𝑔 is injective we have that also
𝑔(𝑤0), . . . , 𝑔(𝑤𝑛) ∈ X are pairwise distinct. Hence,

det
(
𝑔0 𝑔1 . . . 𝑔𝑛
𝑤0 𝑤1 . . . 𝑤𝑛

)
= det

(
𝑓0 𝑓1 . . . 𝑓𝑛

𝑔(𝑤0) 𝑔(𝑤1) . . . 𝑔(𝑤𝑛)

)
≠ 0

and the statement follows from Lemma 4.5.

4.3 Proof of Corollary 4.9
Let 𝑥0, . . . , 𝑥𝑛 ∈ X be pairwise distinct. Then

det
(
𝑔0 𝑔1 . . . 𝑔𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
= det

(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
· 𝑔(𝑥1) · · · 𝑔(𝑥𝑛) ≠ 0

and the statement follows from Lemma 4.5.

4.4 Proof of Corollary 4.10

(i) Assume 𝑓0, . . . , 𝑓𝑛 are linearly dependent, i.e., there are 𝑎0, . . . , 𝑎𝑛 ∈ R not all
zero such that 𝑎0 𝑓0 + · · · + 𝑎𝑛 𝑓𝑛 is the zero polynomial. Hence, 𝑓 has at least
𝑛 + 1 zeros. But since F is a T-system this is a contradiction.

(ii) Let 𝑥0, . . . , 𝑥𝑛 ∈ X be 𝑛 + 1 pairwise distinct points. Then by Definition 4.4 we
have ©­­«

𝑓 (𝑥0)
...

𝑓 (𝑥𝑛)

ª®®¬ =

(
𝑓0 . . . 𝑓𝑛
𝑥0 . . . 𝑥𝑛

)
︸        ︷︷        ︸

=:𝑀

·
©­­«
𝑎0
...

𝑎𝑛

ª®®¬
and since F is a T-system we have that 𝑀 has full rank by Lemma 4.5. Hence,
the coefficients 𝑎0, . . . , 𝑎𝑛 are unique.

4.5 Proof of Example 4.18
Set 𝑓𝑖 (𝑥) := (𝑥 + 𝛼𝑖)−1 and 𝑔(𝑥) = (𝑥 + 𝛼0) · · · (𝑥 + 𝛼𝑛). Then 𝑔 > 0 on [𝑎, 𝑏] since
−𝛼0 < 𝑎 < 𝑏. Hence, F is a T-system on [𝑎, 𝑏] if and only if G = {𝑔𝑖 := 𝑔 · 𝑓𝑖}𝑛𝑖=0
is a T-system on [𝑎, 𝑏] by Corollary 4.9.

We have 𝑔𝑖 (𝑥) = (𝑥 + 𝛼0) · · · (𝑥 + 𝛼𝑖−1) · (𝑥 + 𝛼𝑖+1) · · · (𝑥 + 𝛼𝑛) and deg 𝑔𝑖 = 𝑛.
It is now sufficient to show that G is a T-system on R by Corollary 4.3 since then it
will also be a T-system on [𝑎, 𝑏].
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Since 𝑔𝑖 (𝛼 𝑗 ) = 0 for all 𝑖 ≠ 𝑗 we have that the 𝑔𝑖 are linearly independent. Hence,
lin G = R[𝑥]≤𝑛. But since {𝑥𝑖}𝑛

𝑖=0 is a T-system so is G since every non-trivial
𝑓 ∈ lin G = R[𝑥]≤𝑛 has at most 𝑛 zeros.

In summary, we have that {𝑥𝑖}𝑛
𝑖=0 is a T-system onR⇒ G onR is a T-system ⇒

G on [𝑎, 𝑏] is a T-system ⇒ F on [𝑎, 𝑏] is a T-system.

4.6 To the points 𝑥0, . . . , 𝑥𝑘+𝑙 ∈ [𝑎, 𝑏] add pairwise distinct points 𝑥𝑘+𝑙+1, . . . , 𝑥𝑛 ∈
[𝑎, 𝑏] \ {𝑥0, . . . , 𝑥𝑘+𝑙 . Then the matrix

©­­«
𝑓0 (𝑥0) . . . 𝑓𝑛 (𝑥0)
...

...

𝑓0 (𝑥𝑛) . . . 𝑓𝑛 (𝑥𝑛)

ª®®¬ (S.2)

has full rank since F is a T-system, i.e., every vector, especially

(𝑚, . . . , 𝑚,−𝑚, . . . ,−𝑚, 0, . . . , 0, ∗, . . . , ∗)𝑇 ∈ R𝑛+1

is in its image. But the matrix

©­­«
𝑓0 (𝑥1) . . . 𝑓𝑛 (𝑥1)
...

...

𝑓0 (𝑥𝑘+𝑙) . . . 𝑓𝑛 (𝑥𝑘+𝑙)

ª®®¬
in (4.7) only contains the first 𝑘 + 𝑙 rows of (S.2), i.e., (4.7) has at least one solution.

4.7 By Remark 4.27 only the case 𝑛 = 2𝑚 + 2𝑝 and one end point is contained.
But then we can apply Theorem 4.26 to F̃ = { 𝑓𝑖}𝑛−1

𝑖=0 which ensures by the same
arguments in Remark 4.27 that 𝑥1, . . . , 𝑥𝑝 are the only zeros of some 𝑓 ≥ 0.

Problems of Chapter 5

5.1 Proof of Lemma 5.7
Set 𝑔𝑖 := 𝑔 · 𝑓𝑖 . Then we have to check that

W(𝑔0, . . . , 𝑔𝑘) (𝑥) = det
©­­­­«
𝑔0 (𝑥) 𝑔1 (𝑥) . . . 𝑔𝑛 (𝑥)
𝑔′0 (𝑥) 𝑔′1 (𝑥) . . . 𝑔′𝑛 (𝑥)
...

...
...

𝑔
(𝑛)
0 (𝑥) 𝑔 (𝑛)1 (𝑥) . . . 𝑔 (𝑛)𝑛 (𝑥)

ª®®®®¬
≠ 0

holds for all 𝑥 ∈ [𝑎, 𝑏]. Since 𝑔𝑖 = 𝑔 · 𝑓𝑖 we apply the product rule and get
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W(𝑔0, . . . , 𝑔𝑘) (𝑥) = 𝑔2 · det

©­­­­­­«

𝑓0 (𝑥) 𝑓1 (𝑥) . . . 𝑓𝑛 (𝑥)
𝑓 ′0 (𝑥) 𝑓 ′1 (𝑥) . . . 𝑓 ′𝑛 (𝑥)
𝑔′′0 (𝑥) 𝑔′′1 (𝑥) . . . 𝑔′′𝑛 (𝑥)
...

...
...

𝑔
(𝑛)
0 (𝑥) 𝑔 (𝑛)1 (𝑥) . . . 𝑔 (𝑛)𝑛 (𝑥)

ª®®®®®®¬
since in the first line we factored out 𝑔 and then subtracted 𝑔′-times the first line
from the second, and factored out 𝑔 from the remaining second line. For the second
derivatives in the third line we have

(𝑔 · 𝑓𝑖)′′ = 𝑔′′ · 𝑓𝑖 + 2𝑔′ · 𝑓 ′𝑖 + 𝑔 · 𝑓 ′′𝑖

and hence subtracting 𝑔′′-times the first row, 2𝑔′-times the second row, and finally
factoring out 𝑔 from the remaining third row we get

W(𝑔0, . . . , 𝑔𝑘) (𝑥) = 𝑔3 · det

©­­­­­­­­«

𝑓0 (𝑥) 𝑓1 (𝑥) . . . 𝑓𝑛 (𝑥)
𝑓 ′0 (𝑥) 𝑓 ′1 (𝑥) . . . 𝑓 ′𝑛 (𝑥)
𝑓 ′′0 (𝑥) 𝑓 ′′1 (𝑥) . . . 𝑓 ′′𝑛 (𝑥)
𝑔′′′0 (𝑥) 𝑔′′′1 (𝑥) . . . 𝑔′′′𝑛 (𝑥)
...

...
...

𝑔
(𝑛)
0 (𝑥) 𝑔 (𝑛)1 (𝑥) . . . 𝑔 (𝑛)𝑛 (𝑥)

ª®®®®®®®®¬
.

Proceeding in this manner we arrive at

W(𝑔0, . . . , 𝑔𝑘) (𝑥) = 𝑔𝑛+1 · W( 𝑓0, . . . , 𝑓𝑛) (𝑥) ≠ 0

for all 𝑥 ∈ [𝑎, 𝑏] which proves the statement.

5.2 Proof of Lemma 5.8
We proceed similar to Problem/Solution 5.1 but now with the rule of differentiation
for 𝑓𝑖 ◦ 𝑔. We have

( 𝑓𝑖 ◦ 𝑔)′ = 𝑔′ · ( 𝑓 ′𝑖 ◦ 𝑔)

and hence

W(𝑔0, . . . , 𝑔𝑛) = 𝑔′ · det

©­­­­­­«

𝑓0 ◦ 𝑔 . . . 𝑓𝑛 ◦ 𝑔
𝑓 ′0 ◦ 𝑔 . . . 𝑓 ′𝑛 ◦ 𝑔

( 𝑓0 ◦ 𝑔)′′ . . . ( 𝑓𝑛 ◦ 𝑔)′′
...

...

( 𝑓0 · 𝑔) (𝑛) . . . ( 𝑓𝑛 ◦ 𝑔) (𝑛)

ª®®®®®®¬
by factoring out 𝑔′ from the second row. Then we have

( 𝑓𝑖 ◦ 𝑔)′′ = (𝑔′ · ( 𝑓 ′𝑖 ◦ 𝑔))′ = 𝑔′′ · ( 𝑓 ′𝑖 ◦ 𝑔) + (𝑔′)2 · ( 𝑓 ′′𝑖 ◦ 𝑔),

i.e., we subtract 𝑔′′-times the second row and factor out (𝑔′)2 to get
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W(𝑔0, . . . , 𝑔𝑛) = (𝑔′)3 · det

©­­­­­­­­«

𝑓0 ◦ 𝑔 . . . 𝑓𝑛 ◦ 𝑔
𝑓 ′0 ◦ 𝑔 . . . 𝑓 ′𝑛 ◦ 𝑔
𝑓 ′′0 ◦ 𝑔 . . . 𝑓 ′′𝑛 ◦ 𝑔

( 𝑓0 ◦ 𝑔)′′′ . . . ( 𝑓𝑛 ◦ 𝑔)′′′
...

...

( 𝑓0 · 𝑔) (𝑛) . . . ( 𝑓𝑛 ◦ 𝑔) (𝑛)

ª®®®®®®®®¬
.

Proceeding in this manner with

( 𝑓𝑖 ◦ 𝑔) (𝑘 ) = (𝑔′) (𝑘 ) · ( 𝑓 (𝑘 )
𝑖

◦ 𝑔) + . . . + 𝑔 (𝑘 ) · ( 𝑓 ′𝑖 ◦ 𝑔)

we get
W(𝑔0, . . . , 𝑔𝑛) = (𝑔′)

𝑛(𝑛+1)
2 · W( 𝑓0, . . . , 𝑓𝑛) ◦ 𝑔

with proves the assertion.

5.3 Proof of Lemma 5.9
Set H = {ℎ𝑖}𝑛𝑖=0 with ℎ𝑖 := 𝑓𝑖

𝑓0
. Then by Lemma 5.7 we have

W( 𝑓0, . . . , 𝑓𝑛) = 𝑓 𝑛+1
0 · W(ℎ0, . . . , ℎ𝑛)

and since ℎ0 = 1 we have ℎ′0 = ℎ′′0 = · · · = 0 and

= 𝑓 𝑛+1
0 · det

©­­­­«
1 ℎ1 . . . ℎ𝑛
0 ℎ′1 . . . ℎ′𝑛
...

...
...

0 ℎ (𝑛)1 . . . ℎ
(𝑛)
𝑛

ª®®®®¬
which gives by expanding along the first column

= 𝑓 𝑛+1
0 · det

©­­«
ℎ′1 . . . ℎ′𝑛
...

...

ℎ
(𝑛)
1 . . . ℎ

(𝑛)
𝑛

ª®®¬
= 𝑓 𝑛+1

0 · W(ℎ′1, . . . , ℎ
′
𝑛)

and with 𝑔𝑖 = ℎ′𝑖+1 for 𝑖 = 0, . . . , 𝑛 − 1 we get

= 𝑓 𝑛+1
0 · W(𝑔0, . . . , 𝑔𝑛−1)

which proves the statement.

5.4 (a) Since F is an ET-system on [𝑎, 𝑏] we have

W( 𝑓0, . . . , 𝑓𝑛) (𝑥) ≠ 0
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for all 𝑥 ∈ [𝑎, 𝑏], i.e., also for all 𝑥 ∈ [𝑎′, 𝑏′] ⊆ [𝑎, 𝑏] and hence it is an ET-system
on [𝑎′, 𝑏′].
(b) Since F is an ECT-system on [𝑎, 𝑏] we have

W( 𝑓0, . . . , 𝑓𝑘) (𝑥) ≠ 0

for all 𝑥 ∈ [𝑎, 𝑏] and 𝑘 = 0, . . . , 𝑛, i.e., also for all 𝑥 ∈ [𝑎′, 𝑏′] ⊆ [𝑎, 𝑏] and
𝑘 = 0, . . . , 𝑛 and hence it is an ECT-system on [𝑎′, 𝑏′].

5.5 Proof of Example 4.19
We already know that {1, 𝑥, 𝑥2, . . . , 𝑥𝑘} is an ET-system for any 𝑘 = 0, 1, . . . , 𝑛 since

𝑐𝑊 (1, 𝑥, . . . , 𝑥𝑘) (𝑥) = 1 · 1! · · · · · 𝑘! > 0.

From the Wronskian determinant

W(1, 𝑥, . . . , 𝑥𝑛, 𝑓 ) (𝑥) = 1 · 1! · 2! · . . . · 𝑛! · 𝑓 (𝑛) (𝑥) > 0

we then get that F is an ECT-system on [𝑎, 𝑏] by Theorem 5.12.

5.6 Proof of Examples 5.18
By Lemma 5.8 we only need to prove the statement for one case, say case (b)
G = {𝑒𝛼𝑖 𝑥}𝑛

𝑖=0. Let 𝑘 ∈ {0, 1, . . . , 𝑛}. Then

W(𝑔0, . . . , 𝑔𝑘) = det
©­­­­«
𝑔0 𝑔1 . . . 𝑔𝑘
𝑔′0 𝑔′1 . . . 𝑔′

𝑘
...

...
...

𝑔
(𝑘 )
0 𝑔

(𝑘 )
1 . . . 𝑔

(𝑘 )
𝑘

ª®®®®¬
and with 𝑔 ( 𝑗 )

𝑖
= 𝛼

𝑗

𝑖
· 𝑔𝑖 we get

= deg
©­­­­«
𝑔0 𝑔1 . . . 𝑔𝑘
𝛼0𝑔0 𝛼1𝑔1 . . . 𝛼𝑘𝑔𝑘
...

...
...

𝛼𝑘0𝑔0 𝛼
𝑘
1𝑔1 . . . 𝛼

𝑘
𝑘
𝑔𝑘

ª®®®®¬
= 𝑔0 · 𝑔1 · · · 𝑔𝑛 · det

©­­­­«
1 1 . . . 1
𝛼0 𝛼1 . . . 𝛼𝑘
...

...
...

𝛼𝑘0 𝛼
𝑘
1 . . . 𝛼

𝑘
𝑘

ª®®®®¬
= 𝑔0 · 𝑔1 · · · 𝑔𝑘 ·

∏
0≤𝑖< 𝑗≤𝑘

(𝛼 𝑗 − 𝛼𝑖) ≠ 0

which proves the statement.

5.7 To construct the non-negative polynomial on [0,∞) with the double zero 𝑥1 = 1
and the zero 𝑥2 = 2 with algebraic multiplicity 𝑚2 = 4 we need 7 monomials.
We chose 𝑓0 (𝑥) = 1, 𝑓1 (𝑥) = 𝑥2, 𝑓2 (𝑥) = 𝑥3, 𝑓3 (𝑥) = 𝑥5, 𝑓4 (𝑥) = 𝑥8, 𝑓5 (𝑥) =

𝑥11, 𝑓6 (𝑥) = 𝑥13 and leave out 𝑥42. With (5.5) we get
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𝑓 (𝑥) = det
(
𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6
𝑥 1 1 2 2 2 2

)

= det

©­­­­­­­­­­­«

𝑓0 (𝑥) 𝑓1 (𝑥) 𝑓2 (𝑥) 𝑓3 (𝑥) 𝑓4 (𝑥) 𝑓5 (𝑥) 𝑓6 (𝑥)
𝑓0 (𝑥1) 𝑓1 (𝑥1) 𝑓2 (𝑥1) 𝑓3 (𝑥1) 𝑓4 (𝑥1) 𝑓5 (𝑥1) 𝑓6 (𝑥1)
𝑓 ′0 (𝑥1) 𝑓 ′1 (𝑥1) 𝑓 ′2 (𝑥1) 𝑓 ′3 (𝑥1) 𝑓 ′4 (𝑥1) 𝑓 ′5 (𝑥1) 𝑓 ′6 (𝑥1)
𝑓0 (𝑥2) 𝑓1 (𝑥2) 𝑓2 (𝑥2) 𝑓3 (𝑥2) 𝑓4 (𝑥2) 𝑓5 (𝑥2) 𝑓6 (𝑥2)
𝑓 ′0 (𝑥2) 𝑓 ′1 (𝑥2) 𝑓 ′2 (𝑥2) 𝑓 ′3 (𝑥2) 𝑓 ′4 (𝑥2) 𝑓 ′5 (𝑥2) 𝑓 ′6 (𝑥2)
𝑓 ′′0 (𝑥2) 𝑓 ′′1 (𝑥2) 𝑓 ′′2 (𝑥2) 𝑓 ′′3 (𝑥2) 𝑓 ′′4 (𝑥2) 𝑓 ′′5 (𝑥2) 𝑓 ′′6 (𝑥2)
𝑓 ′′′0 (𝑥2) 𝑓 ′′′1 (𝑥2) 𝑓 ′′′2 (𝑥2) 𝑓 ′′′3 (𝑥2) 𝑓 ′′′4 (𝑥2) 𝑓 ′′′5 (𝑥2) 𝑓 ′′′6 (𝑥2)
𝑓
(4)

0 (𝑥2) 𝑓 (4)1 (𝑥2) 𝑓 (4)2 (𝑥2) 𝑓 (4)3 (𝑥2) 𝑓 (4)4 (𝑥2) 𝑓 (4)5 (𝑥2) 𝑓 (4)6 (𝑥2)

ª®®®®®®®®®®®¬
= det

©­­­­­­­­­«

1 𝑥2 𝑥3 𝑥5 𝑥8 𝑥11 𝑥13

1 1 1 1 1 1 1
0 2 3 5 8 11 13
1 4 8 32 256 2 048 8 192
0 4 12 80 1 024 11 264 53 248
0 2 12 160 3 584 56 320 319 488
0 0 6 240 10 752 253 440 1 757 184

ª®®®®®®®®®¬
𝑓 (𝑥) = 48 ·

(
14 980 788𝑥13 − 184 325 420𝑥11 + 2 421 354 616𝑥8 − 26 336 028 160𝑥5

+112 945 898 496𝑥3 − 112 347 781 120𝑥2 + 23 485 900 800
)
.

The function 𝑓 is shown in Figure S.1.

0.0 0.5 1.0 1.5 2.0 2.5
0

5.0×1011

1.0×1012

1.5×1012

2.0×1012

Fig. S.1: The function 𝑓 from the solution of Problem 5.7.

This function 𝑓 we gave here is not unique. Of course every multiple of 𝑓 also
fulfills the requirements but we also made the restrictions to use all monomials except
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𝑥42. We get another polynomial when we e.g. leave out 𝑥13 (or any other monomial
except 1) instead of 𝑥42. Then any conic linear combination of these functions also
fulfills the requirements.

We can not leave out 1 since any linear combination has the additional zero 𝑥 = 0.

Problems of Chapter 6

6.1 Proof of Corollary 6.8
Since F is a continuous T-system we can assume that

det
(
𝑓0 𝑓1 . . . 𝑓𝑛
𝑥0 𝑥1 . . . 𝑥𝑛

)
> 0

for all 𝑎 ≤ 𝑥0 < 𝑥1 < · · · < 𝑥𝑛 ≤ 𝑏. Since the Gaussian kernel is ETP𝑘 for every
𝑘 ∈ N0, see Example 6.6, we have

𝐾∗
𝜎

(
𝑥1 𝑥2 . . . 𝑥𝑛
𝑦1 𝑦2 . . . 𝑦𝑛

)
> 0

for all 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 and 𝑦1 ≤ 𝑦2 ≤ · · · ≤ 𝑦𝑛 in R as well as 𝜎 > 0.
Hence, in W( 𝑓𝜎,0, 𝑓𝜎,1, . . . , 𝑓𝜎,𝑛) (𝑥) = (6.6) in Lemma 6.7 we are integrating
over a non-negative functions with respect to the Lebesgue measure 𝜇 = 𝜆, i.e.,
W( 𝑓𝜎,0, 𝑓𝜎,1, . . . , 𝑓𝜎,𝑛) (𝑥) > 0 for all 𝑥 ∈ [𝑎, 𝑏] which proves the statement.

Problems of Chapter 7

7.1 The family F on [𝑎, 𝑏] needs for a fixed 𝑓 ≥ 0 only be an ET-system around the
zeros of 𝑓 but otherwise the proof of Karlin’s Theorem 7.1 is employed, i.e., there
we only need F to be a T-system.

Problems of Chapter 8

8.1 Proof of Karlin’s Positivstellensatz 8.4 on R
By (a) there exists a function 𝑤 ∈ C(R,R) such that 𝑤 > 0 on R and

lim
𝑥→∞

𝑓𝑛 (𝑥)
𝑤(𝑥) = 1.

By (b) we define
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𝑣𝑖 (𝑥) :=

{
𝑓𝑖 (𝑥 )
𝑤(𝑥 ) if 𝑥 ∈ R,
𝛿𝑖,𝑛 if 𝑥 = ±∞

for all 𝑖 = 0, 1, . . . , 𝑛. Then by (c) and Corollary 4.9 we have that {𝑣𝑖}𝑛𝑖=0 is a T-system
on [0,∞]. With 𝑡 (𝑥) := tan(𝜋𝑥/2) we define

𝑔𝑖 (𝑥) := 𝑣𝑖 ◦ 𝑡

for all 𝑖 = 0, 1, . . . , 𝑛. Hence, G = {𝑔𝑖}𝑛𝑖=0 is a T-system on [−1, 1] by Corollary 4.8.
We now apply Karlin’s Positivstellensatz 7.3 to G. Set 𝑔 := ( 𝑓

𝑤
) ◦ 𝑡.

(ii): By Karlin’s Positivstellensatz 7.3 on [𝑎, 𝑏] there exist points

−1 = 𝑦0 < 𝑥1 < 𝑦1 < · · · < 𝑥𝑚 < 𝑦𝑚 = 1

and unique functions 𝑔∗ and 𝑔∗ such that 𝑔 = 𝑔∗+𝑔∗, 𝑔∗, 𝑔∗ ≥ 0 on [−1, 1], 𝑥1, . . . , 𝑥𝑚
are the zeros of 𝑔∗, and 𝑦0, . . . , 𝑦𝑚 are the zeros of 𝑔∗. Then 𝑓∗ := (𝑔∗ ◦ 𝑡−1) · 𝑤 and
𝑓 ∗ := (𝑔∗ ◦ 𝑡−1) · 𝑤 are the unique components in the decomposition 𝑓 = 𝑓∗ + 𝑓 ∗.

(i): Since 𝑔∗ (𝑦0) = 𝑔∗ (𝑦𝑚) = 0 we have that 𝑔∗ contains no 𝑔2𝑚 and hence the
coefficient of 𝑔2𝑚 in 𝑔∗ is 𝑎2𝑚.

8.2 Proof of Karlin’s Nichtnegativstellensatz 8.5 on R
Similar to the proof of Karlin’s Nichtnegativstellensatz 8.3 on [0,∞) and hence
Problem/Solution 8.1.

The conditions (a) – (c) are such that F on [−∞,∞], i.e., including ±∞, is an
ET-system.

With the same argument as in the proof of Karlin’s Positivstellensatz 8.1 we
transform F on [−∞,∞] into G on [−1, 1] with the tan-function. Here Lemma 5.8
ensures that also G is an ET-system.

Application of Karlin’s Nichtnegativstellensatz 7.6 on [−1, 1] gives the desired
decomposition 𝑔 = 𝑔∗ + 𝑔∗ with the observation that 𝑥 = ±1 is a zero of at most
multiplicity one by (a) and (b). Backwards transformation into F on [−∞,∞] resp.
[−∞,∞) then gives the assertion.

Problems of Chapter 9

9.1 Proof of Theorem 9.13
Theorem 9.10 can in general not be extended to [0, 𝑏] since {𝑥𝛼0 , . . . , 𝑥𝛼𝑛 } is not
an ET-system. This fails at 𝑥 = 0. But on (0, 𝑏] it is an ET-system. We can therefore
factor out the zeros of 𝑓 ≥ 0 at 𝑥 = 0

𝑓 (𝑥) = 𝑎𝑖𝑥𝛼𝑖 + 𝑎𝑖+1𝑥
𝛼𝑖+1 + · · · + 𝑎𝑛𝑥𝛼𝑛 = 𝑥𝛼𝑖 · (𝑎𝑖 + 𝑎𝑖+1𝑥

𝛼𝑖+1−𝛼𝑖 + · · · + 𝑎𝑛𝑥𝛼𝑛−𝛼𝑖︸                                       ︷︷                                       ︸
=: 𝑓 (𝑥 )

)
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to get some 𝑓 with 𝑓 ≥ 0 on [0, 𝑏] and 𝑓 (0) > 0. To 𝑓 we can then apply
Theorem 9.10 with 𝑎 = 0.

In summary, Theorem 9.10 on [0, 𝑏] holds if 𝑓 (0) > 0, see also Theorem 10.5
and Remark 10.6 for the corresponding version on [0,∞).

Problems of Chapter 10

10.1 Proof of Theorem 10.5
To prove Theorem 10.5 we have to note that F = {𝑥𝛼𝑖 }𝑛

𝑖=0 with 𝛼0 = 1 is an
ET-system on (0,∞). The only difficulty is 𝑥 = 0 where F fails to be a ET-system.

But looking closely at the proof of Karlin’s Theorem 7.5 (see Problem/Solution
7.1) the ET-system property is only required in a neighborhood of the zeros of 𝑓 and
otherwise it is the proof of Karlin’s Theorem 7.1 for T-systems. Since 𝑓 (0) > 0 we
have no zero at 𝑥 = 0 where F fails to be a T-system. In fact, we have 𝑓 (𝑥) > 0 for all
𝑥 ∈ [0, 𝜀) for some 𝜀 > 0. Hence, we can apply Karlin’s Nichtnegativstellensatz 8.3
since its proof requires for our 𝑓 with 𝑓 (0) > 0 only that F to be an ET-system on
(0,∞) which is fulfilled.

10.2 By expanding

𝑟∏
𝑖=1

(𝑥 − 𝑧𝑖)𝑚𝑖 ·
(
𝑎 ·

𝑚∏
𝑖=1

(𝑥 − 𝑥𝑖)2 + 𝑏 ·
𝑚−1∏
𝑖=1

(𝑥 − 𝑦𝑖)2

)
we see that 𝑎 · 𝑥𝑚1+···+𝑚𝑟+2𝑚 is the monomial with the highest degree 𝑚1 + · · · +𝑚𝑟 +
2𝑚 = deg 𝑝 and the coefficient is 𝑎.
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[Mün14] C. H. Müntz, Mathematische Abhandlungen Hermann Amandus Schwarz zu seinem
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Pólya’s Signed Representing Theorem 39
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