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Part |.
Classical Theory

1. Introduction

This is the script for the lecture and therefore not without errors and mistakes. Don’t
take everything as it is but think about it yourself!

1.1. Administration

Lecture times:
e Wed 10:00 - 11:30, D404
e Thu, 13:30 - 15:00, D404
Exercise time:
e 15 Nov. 13:30 - 15:00, D404
e 29 Nov. 13:30 - 15:00, D404
e 13 Dez. 13:30 - 15:00, D404
o ...
Exams:
e 1/2 Semester:

e Full Semester:

1.2. What is the Lecture about

Moments (name from physics):
/ (2% +*) - p(z,y, 2) dz. (Moment of inertia)
R3

Moment Problem: Given a linear space V of real function f : X — R, X a measurable
space, and a linear functional L : V — R. Does there exist a measure p on X such that

L(f) = /X f(2) du(z)

for all f € V?
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In most cases we will deal with V' = Rz, ..., x,] the ring of polynomials and X C R"™
a closed bounded or even semi-algebraic set.

We are interested in special measures, e.g., when V is finite dimensional, then we will
have Richter’s Theorem: We can chose an finitely atomic measure Zle ¢; -0, for L with
kE<dimV, ¢; > 0, and x; € X pairwise distinct. Of special theoretical and application
interest there is the minimal number k.

Other special measures of interest will be Gaussian mixtures 3.5 ¢;-G(03, z;), G(0, )
a Gaussian distribution with variance o centered at x.

We will also have a look at an optimization point of view:

:voEHlKlgR" p(l'o) - u:surgll)l;rtlgl(, /p(m) dﬂ(.’L‘) - s K{Inlllorrlnent Ls(p)
w(K)=1 sequece, sg=1

We hopefully will also be able to study special partial differential equations and
measure transformations.

The aim of this lecture is to give a quick introduction in approx. the first half of the
semester to the “old” theory and go quickly to recent research.

1.3. Literature for the Lecture

Literature to the Moment Problem and some Applications:
e K. Schmiidgen [Schl17]
e M. Marshall [Mar(§]
e M. Laurent [Lau(9]
e J.-B. Lasserre [Las15|

Historical literature: [KN77], [Akh65], [AKG2].
Literature for convex geometry: [Roc72|, [Schi4], [Sim11], [Soll5].
More specialized literature, especially research papers, are cited when needed.

2. Integral Representations of Linear Functionals

2.1. Moment Functionals

Definition 2.1.1. Let X be a locally compact Hausdorff space and £ C C(X,R) be a
linear subset.

(i) We denote by M(X) the set of all Radon measures[]

!Note, for us measures are always non-negative, unless specifically denoted as signed measure.
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(ii) Let C' C E be a subset and L : E — R be a linear functional. We call L to be
C-positive if L(f) > 0 for all f € C. We call L to be strictly C-positive if L(f) > 0
for all f € C'\ {0}.

(iii) By :={f € E|f(x) >0 forall z € X}.

(iv) Let p € M(X) and E C L'(X, pu). Then L, is the E,-positive linear functional
L,:E—=R, f v—>/ f(z) du(z).
X

Definition 2.1.2. Let X be a locally convex topological Hausdorff space and F C
C(X,R) be a linear subset. A linear functional L : E — R is called a moment functional
if there exists a p € M(X) with L, = L. Any such measure p is called a representing
measure of L. The set My of representing measures of L is

My ={peMX)|L=L,}

A moment functional L is called determinate if it has a unique representing measure,

i.e., #ML =1.

Lemma 2.1.3. Let X be a locally convex topological Hausdorff space, E C C(X,R) be
a linear subset, and L : E — R be a moment functional. Then My is convez.

Proof. Let p,v € My and A € [0, 1]. Then

Lnwrraw(f / f(x) dOvi+ (1= \w) ()

—A/f du(z) + (1 A)/Xf(ﬂf)dV(a:)
— AL(f) + (1 - NL(f)

= L(f)
for all f € E. m

Definition 2.1.4. Let K C X a closed subset of a locally compact topological Hausdorff
space. A linear functional L : F — R is called a K-moment functional if there exists
a measure 1 on X such that supppu € K and L = L,. The set of all such representing
measures is denoted by

Mg ={pe MX)|suppp C K and L = L, }.

L is called K-determinate if #M x = 1.
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2.2. Choquet’ﬂ Theory and adapted Spaces

Definition 2.2.1. Let X be a locally compact topological Hausdorff space and f,g €
C(X,R). We say g dominates f if for every € > 0 there exists a compact subset K, C X
such that

[f(@)] < e lg(x)|
for all x € X'\ K..

Lemma 2.2.2. Let
U:={neC(X,R)|0<n(x) <1 foralx e X}.
For any f,g € C(X,R) the following are equivalent:
(i) g dominates f.

(i1) For every e > 0 there exists n. € U such that

[f(@)] < e-lg@)] +[f(@)] - ne(x)
forallz € X.

(111) For every e > 0 there exists he € C.(X,R) such that

|f(x)] < e-lg(@)] + he(x)
forallz € X.

Proof. (i)=(ii): Choose 7. € U such that n.(x) =1 for all x € K..

(i)=(iil): Set he :=|f| - n..

(iii)=(i): Since h. € C.(X,R) we have that K. := supp h. is compact and we have
|f(z)] <e-|g(x)| for all z € X'\ K. O

Definition 2.2.3. Let X be locally compact topological Hausdorff space and E C
C(X,R) be a linear subspace. E is called adapted if the following hold:

(ii) For each z € X there exists an f € F, such that f(z) > 0.

(iii) For each f € E, there exists an g € E such that g dominates f.

Lemma 2.2.4. Let X be a locally compact topological Hausdorff space. If E is an
adapted subspace of C(X,R), then for any f € C.(X,R); there exists a g € E, such
that g(x) > f(x) for allx € X.

Proof. Let x € X. By Definition [2.2.3[(ii) there exists a g, € E such that g,(z) > 0.
By multiplying g, with some constant we can assume without loss of generality that

9=(2) > f(). (%)
By continuity (%) holds on some neighborhood of z. By compactness of supp f there

are finitely many x1,..., 2y € X such that g(x) := g,, () + -+ + g (x) > f(z) for all
x € supp f and g(z) > f(z) for all z € X. ]

2Gustave Alfred Arthur Choquet (1 March 1915, Solesmes (France) — 14 November 2006, Lyon)
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2.3. Existence of Integral Representations

Lemma 2.3.1. Let E C F be a linear subspace of a real vector space F and let C' C F
be a conver cone of ' such that F' = E+C'". Then each (C'NE)-positive linear functional
L: E — R can be extended to a C-positive linear functional L : F — R.

Proof. Let f € F. We define

q(f) :=inf{L(g)|g € E, g— f € C}. (1)

Since F' = FE + C, there exists a g € E such that —f + g € C| so the corresponding set
in (1)) is non-empty. It is easy to see that ¢ is a sublinear functional and L(g) = ¢(g) for
g € E. Hence, by the Hahn-Banach dominated Extension Theorem there exists
an extension L : F — R of L : E — R such that L(f) < q(f) for all f € F.

Let h € C. Setting g = 0 and f = —h we have g — f € C, so that ¢(—h) < L(0) =0
by (%). Hence, L(—h) < ¢(—h) <0, so L(h) > 0 and L is C-positive. O

Basic Representation Theorem 2.3.2. Let X be a locally compact topological Hausdorff
space and E C C(X,R) be an adapted subspace. For any linear functional L : E — R
the following are equivalent:

(i) The functional L is E.-positive.
(i1) For each f € Ey there exists an h € E, such that L(f + eh) > 0 for all € > 0.

(i1i) L is a moment functional.

Proof. The implications (iii) = (i) < (ii) are clear.
(i) = (iii): Set

E :={f € C(X,R)|there exists g € E such that |f(z)| < |g(z)| for all z € X}.

We show E = E+(E),. We have E+(FE), C E. Conversely, let f € E. We chose g € E,
such that |f| < g. Then we have f4+g € (E);, —g € E,and f = —g+(g+f) € E+(E),.
Hence, F = E 4 (E)..

By Lemma we can extend L to an (E)-positive linear functional L : E — R.
We have C.(X,R) C E by Lemma and hence by the Riesz—Markov-Kakutani
Representatlon Theorem 1| there exists a representing measure u € M(X') such that

= [, f( x) for all f € C.(X,R). By Definition (1) we have £ = E, — E,,
1.e., is remains to show that for all f € E, we have f € L' (X, u) and L(f) = L(f) =
Jx (@) d

Let f € E, and set
U:={neC.(Xx, ]R)|0<77(:75)<1forallx€X}.

For n € U we have f-n € C, (X R) and hence L(f - 7) = [, [( x) du(z). From
this and the (E),-positivity of L we have
[ 1) dut) =sup [ @) ata) dute) =swp L) S LU = (P <0 )
X neu neu
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and therefore f € LY(X, u).

By it is sufficient to show L(f) < [, f(z) du(x). By Definition m(iii) there
exists a g € E, that dominates f. Then, by Lemma for any € > 0 there exists a
function n. € U such that f <e-g+ f-n.. Since f-n. < f we obtain

L(f) = L(f) < eL(g) + L(f-n.) = eL(g) /f ne(2) dulz) < Ly /f e

Since g does not depend on € we pass to the limit £ \ 0 to get L(f) < fx
Hence, L(f) = [, f y ) which completes the proof. D

Proposﬂzlon 2.3.3. Let X be a compact Hausdorff space and E C C(X,R) be a linear
subspace such that there exists an e € E with e(x) > 0 for all x € X. Then each
E . -positive linear functional L : E — R is a moment functional.

Proof. Set FF = C(X,R) and C = C(X,R)y. Let f € F. Since X is compact, f

is bounded and e has a positive minimum. Hence, there exists a A > 0 such that

f(z) < Xe(z) for all x € X. Since Ae — f € C' and —Ae € FE we have
—f=-2Xe+(Ae—-f)e E+C,

ie., F = EF+C. By Lemma L extends to a C-positive linear functional L:F =R
By the Riesz—Markov—Kakutani Representation Theorem L and hence also L have
a representing measure p € M(X). O

Definition 2.3.4. Let n € IN and K C R”. Then we define the cone of non-negative
polynomials on K by

Pos(K) :={f € Rlzy,...,x,]| f(x) > 0 for all z € K}

and the cone of sums of squares > Rlxy, ..., z,]* by

ZRxl,..., Po={fl+-+filfi,. .., fa €R[ry,...,2,] for some d € N}.

Haviland’s Theorem 2.3.5 ([Hav35, Hav36]E[). Letn € N, K CR" be a closed subset,
and L : R[xq,...,z,] = R. Then the following are equivalent:

(i) L is Pos(K)-positive.
(11) L(f +e-1) >0 for all f € Pos(K) and £ > 0.
(i1i) For any f € Pos(K) there is an h € Pos(K) such that L(f +¢ch) > 0 for all e > 0.

(iv) L is a K-moment functional.

Proof. (iv) = (i) < (ii) < (iii) are clear. It is sufficient to prove (i) = (iv).

We check that £ = Rlzy,...,z,] € C(X = R™" R) is an adapted space. Since
4p = (p+1)? — (p — 1)? condition (i) in Definition is fulfilled. Condition (ii) of
Definition [2.2.3]is fulfilled since 1 € E, = Pos(K ) and condition (iii) is fulfilled since for
any p € E; = Pos(K) we have that g := (2 + -+ + z2) - p dominates p. Now the Basic
Representation Theorem 2| applies and proves the statement. O

3Edward Kenneth Haviland (1934 PhD Johns Hopkins University)
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3. Moment Problems on Intervals [ C R

3.1. Moment Sequences, Riesz Functionals, and Hankel Matrices

Definition 3.1.1. Let n € IN, K C R" be a closed subset, and let s = (Sa)aemg be a
real sequence. We call s a K-moment sequence (or just moment sequence) if there exists
a measure p € M(R™) with supp u € K and

Sa = /K 2® dp(z)

for all a € INj. s, is called the ath moment.

Definition 3.1.2. Let n € IN and s = (sa)aemg be a real sequence. We define the Riesz
functional L : Rlzy,...,x,] = R by Lg(z®) := s, for all @« € Ny and extend it linearly
to all Rlxy, ..., z,].

Example 3.1.3. Let 5 = (s;),en, be a real sequence and p(z) = ¢ ¢;z° € Rz]. Then

d
Ls(p) = Zci3i~ o
i=0
Lemma 3.1.4. Letn € N, K C R" be closed, and s = (Sa)acny be a real sequence. The
following are equivalent:
(i) s is a K-moment sequence.
(ii) Ls is a K-moment functional.
Proof. Follows directly from the definitions. O

Definition 3.1.5. Let n € IN and s = (84 )aeny be a real sequence. For each d € Ny we
define the Hankel] matriz Hy(s) by

Hy(s) = (Sar8)apengialis<a € RV
with |a| =o 4+t o, for all @ = (0417---70471> € ]Ng and N = (nzd>

Example 3.1.6. Let s = (s;);en, be a real sequence and d € INg. Then

S0 S1 52 ce Sd
S1  S2 S3  Sd41

Hy(s) = | s, S3 S4 ot Sqe2 | - ©
Sd Sd+1 Sd+2 ° S2d

4Hermann Hankel (14 February 1839, Halle (Saale) — 29 August 1873, Schramberg)

10
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Definition 3.1.7. Let n € N, s = (s4)acns be a real sequence, and v € INg. We define
the shift X7 acting on s by

X7s = (Sa+v)aemg-

Example 3.1.8. Let s = (s;)ien, be a real sequence and k,d € INy. Then

Sk Sk+1 Sk+2 Sk+d
Sk+1  Sk+2 Sk+3 Sk+d+1
ko)
Hy(X"s) = Skr2  Sk43 Skta 0 Skadi2 | - ©
Sk+d  Sk+d+1  Sk+d+2 °° Sk42d

Definition 3.1.9. Let n € N and s = (sa)aemg be a real sequences. We call s a positive
semidefinite sequence if Hy(s) > 0 for all d € N, i.e.,

ol Hy(s) -z = Z To - Satp - Tg >0
a,BeNG:|al,|f|<d

for all z = (Ioz)ozE]Ng:\ode € RY with N = (”Zd). We call s a positive definite sequence if
Hy(s) = 0 for all d € Ny, i.e.,

ol Hy(s) -z = Z To * Sarp - Tg >0
o, BEN ol Bl <d

for all z = (Za)aenp:|aj<d € RYA\ {0} with N = (n::d)‘

Lemma 3.1.10. Let n € IN, s = (8a)acny be a real sequence, ¢ = (Ca)aemg:\a|gd with
d € Ny, and v € INjj. The following holds:

(1) For pe(x) := 3 qennijaj<d Ca®” € Rlz1, ..., 20] we have
Ly(p?) =" - Hy(s) - c.
(i1) For all p € R[zy,...,z,] we have
LX'YS(p> = LS(ZL’,Y p(l’))

Proof. Follows directly from the definitions. O

11
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3.2. Hamburger Moment Problem (I = R)
Lemma 3.2.1. Pos(R) = {f*+ ¢*| f, g € R[z]}.

Proof. D is clear. So let p € Pos(R). By the fundamental theorem of algebra and since
all coefficients are real we can write p as

k l
p(m):Ha:—aZ2 Hm—b (x — j),
=1 j=1

=(z—c¢; ) +d2

witha; e Rforalli=1,...,kand b; € C\R as well as ¢j,d; e Rforall j =1,...,1
for some k,l € INy with 2k 4 2] = degp. From

(a® 4+ b*)(c* 4+ d*) = (ac — bd)* + (ad + bc)?
we find p = f2 + ¢? for some f, g € R[x] which proves C. O
The following is the solution to the Hamburgerﬂ moment problem, i.e., I = R.

Hamburger’s Theorem 3.2.2 ([Ham20]). Let s = (S;)ien, be a real sequence. The
following are equivalent:

(i) s is a R-moment sequence (Hamburger moment sequence).

(i1) Ls(p) > 0 for all p € Pos(R).
(iii) Ls(p*) >0 for all p € R[z].

(iv) s is positive semidefinite, i.e., Hy(s) = 0 for all d € WNy.
Proof. From Haviland’s Theorem we have (i) < (ii). From Lemma we have
(ii) < (iii). (iii) < (iv) follows from Lemma [3.1.10] O
3.3. Stieltjes Moment Problem (I = [0, 0))
Lemma 3.3.1. Pos([0,00)) = {f1(2)?+ fa(z)? 42+ (g1 (2)*+92()?) | f1, f2, 91, 92 € Rl]}.

Proof. Set Q = {fi(x)? + fo(x)* + 2 - (q1(x)® + g2(2)®) | f1, f2, 91,92 € R[z]}. Then
Pos([0,00)) D @ is clear. So let p € Pos([0,00)). By the fundamental theorem of
algebra we can write p as

k l
p(z)=a- Ha:—al H ((z = b)) ) (%)
i=1 j=1
for some a,a;,bj,¢c; € R, dj,e; € Nforalli=1,...,k, j=1,...,[, and k,l € Ny. By

(ff +2g))(fs +2g3) = (fF1fy +2°gigs) + 2(figs + 91f3) € Q
®Hans Ludwig Hamburger (5 August 1889, Berlin — 14 August 1956, Cologne)

12
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we have Q-Q C . Hence, in () it is sufficient to to show that every factor is in (). Here,
(z—a;))%, ((z—b;)*+c3)% € Qforall j=1,...,1 and even d; is clear. So let us look at
a € R and (z —a;)% with d; odd, assume d; = 1 since d; = 26; + 1 implies (x —a;)* € Q
again. From lim, ,,, p(z) = oo we gain a > 0 and since a; € R are disjoint, at every
x = a; the polynomial p(z) has a sign change, i.e., a; <Oand x —a; = —a; +r € Q. [

The following is the solution to the Stieltjesﬂ moment problem, i.e., I = [0, 00).

Stieltjes’ Theorem 3.3.2 ([Sti%4]). Let s = (s;)ien, be a real sequence. The following
are equivalent:

(i) s is a [0,00)-moment sequence (Stieltjes moment sequences).
(11) Ls(p) >0 for all p € Pos(]0,00)).
(iii) Ls(p?) > 0 and Lxs(p?) > 0 for all p € Rlx].
(iv) s and X s are positive semidefinite, i.e., Hy(s) = 0 and Hy(Xs) = 0 for all d € Ny.

Proof. From Haviland’s Theorem we have (i) < (ii). From Lemma we have
(i) < (iii). (iii) < (iv) follows from Lemma |3.1.10} O

The next example gives the first indeterminate moment sequence.

Example 3.3.3 ([Sti94]). Let ¢ € [-1,1] and

) = <= X)o7 exp ()

for all z € R (or z € [0,00)). Then the measure . € M(R) defined by
dpe(x) == 14 c-sin(2rlnz)] - f(z) da
has the moments

Sk = / 2% dp(z) = ez#’
R

for all £ € INy, i.e., independent on ¢ € [—1, 1]. o

3.4. Hausdorff Moment Problem (I = [0, 1])
Lemma 3.4.1. Pos([0,1]) = {f(z) + = - g(z) + (1 — z) - h(z) | f,g,h € > R[z]*}.

Proof. Set Q = {f(x) +x-g(x)+ (1 —z)-h(z)| f,g,h € > R[z]*}. Then Q C Pos([0, 1])
is clear. So let p € Pos([0, 1]). Then by the fundamental theorem of algebra we can write

p as
k !

p(x) =a- ][ —a)® Tz =0, + )" ()

i=1 j=1

5Thomas Joannes Stieltjes (29 December 1856, Zwolle (Netherlands) — 31 December 1894, Toulouse)
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for some a, a;,b;,c; € R, dj,e; € Nforalle=1,...,k, j=1,...,[,and k,l € Ny. From
v-(1—2)=2>-1—2)+z-(1-2)?

we see that Q- Q C Q. Let us look at (x — a;)% for d; odd and we can assume d; = 1
since with d; = 26; +1 we have (x—ai)‘” € (). But since the a; are disjoint, we have at a;
a sign change, i.e., a; € (0,1). Since p(z) > 0 on [0, 1] we then have that we can change
the sign of a and for all a; > 1 the sign from (z — a;) to (a; — x) to have p € Q. O

The following is the solution to the Hausdorﬂm moment problem, i.e., I = [0, 1].

Hausdorff’s Theorem 3.4.2 ([Hau2l]). Let s = (8;)ien, be a real sequence. The
following are equivalent:

(i) s is a [0, 1]-moment sequence (Hausdorff moment sequences).
(i) Ls(p) > 0 for all p € Pos([0,1]).
(i) Ls(p*) >0, Lxs(p?) >0, and L—x)s(p?) > 0 for all p € Rz].

() s, Xs, and (1 — X)s are positive semidefinite, i.e., Hy(s) = 0, Hy(Xs) = 0, and
Hqi((1—X)s) =0 for all d € Ny.

Proof. From Haviland’s Theorem we have (i) < (ii). From Lemma we have
(i) < (iii). (iii) < (iv) follows from Lemma [3.1.10} O

4. Multidimensional Moment Problems

4.1. Uniqueness on Compact Sets

Theorem 4.1.1. Let n € N and K C R"™ be compact. Then every Pos(K)-linear
functional L : Rlxq, ..., z,] = R has a unique representing measure, i.e., L is determinate.

Proof. The existence of a representing measure follows from Haviland’s Theorem [2.3.5]
It remains to show the uniqueness. Since R[zy,...,z,] € C(K,R) is a unitial algebra
which separates points, by the Stone-Weierstrafi Theorem the polynomials are
dense in C'(K,R). Now assume L has two representing measures p; and ps such that
1 # pe. Then by the Riesz—Markov—Kakutani Representation Theorem there
exists a f € C.(K,R) = C(K,R) with

/K F(&) dus(x) # /K F(2) dus(x). (+)

Since R[zy,...,x,] is dense in C'(K,R) there exists a family (pg)renw € Rlz1, ..., 2]

with
1

k
"Felix Hausdorff (8 November 1868, Breslau — 26 January 1942, Bonn)

1Pe = flloo <
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for all K € IN. Then

'/f (o)~ [ 1) dpalo

‘/f 2) dpa(a)
+‘/1 dm(x))

J<lf i
<|If = prlloo - (‘/1 dps(z)

2 o
< 7 L) LEEN
which contradicts (*) and therefore p; = ps. O

4.2. Hilbert's®Theorem
Definition 4.2.1. Let n € N and d € INg. We define
N(n,d) == SRz, ..., 2" N R[21, ..., Tn)<d

and
Pos(n,d) := Pos(R") N Rz, ..., zy]<q.
Hilbert’s Theorem 4.2.2 ([Hil88]). We have

Pos(n,d) = X(n,d) & (n,d)e {1} x2lNy U Nx{2} U {(2,4)}.

4.3. Examples of Non-negative Polynomials which are not Sums of
Squares

Definition 4.3.1. We define the Motzkinf’| polynomial by
fMotzkin(xa y) =1- 3$2?JZ + IQQ4 + 554?/2-
Theorem 4.3.2 ([Mot67]). fuotzkin € Pos(2,6) \ 2(2,6).

Proof. From the inequality

%ﬂc > Vabe

for a,b,c > 0 we get with a = 1, b = 22y* and ¢ = 2%y? that fyroruin(,y) € Pos(2,6).
We now show fuotzin & 2(2,6). Assume we have fuopkin = »; f7 for some f; €
R[z,y]. Then deg f; < 3 and all f; are linear combinations of 1, z, y, 22, xy, y?, 2%, 2%y,
xy?, o
Assume 2 appears in some f;. Then also 2% would appear in fyotxin and therefore
2% does not appear in any f;. The same holds for 7.

8David Hilbert (23 January 1862, Kénigsberg — 14 February 1943, Gottingen)
9Theodore Samuel Motzkin (26 March 1908, Berlin — 15 December 1970, Los Angeles)
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Assume 2 appears in some f;. Since no 23 appears and could give a negative coefficient
from a possible x, then also 2* would appear in fuyotzkin, i-€., 2 does not appear in any
fi. The same holds for y2.

Assume x appears in some f;. Since no z? appears and could give a negative coefficient
from a possible 1, then also 22 would appear in fuotsxin, i-€., © does not appear in any
fi- The same holds for y.

In summary, every f; must be of the form

fi = ai + bixy + 2’y + dizy®
But then Y, b7 = —3 contradicts fuotkin € 2(2,6), 1€, fotakin & 2(2,6). O
Examples 4.3.3. (a) Robinson polynomial [Rob69]:
FRobinson (7, y) = 1=~y —2?+32%* —y* +ab—a'y* —2®y*+y° € Pos(2,6)\2(2,6).
(b) Choi-Lam™| polynomial [CL77]:
fohoioLam (T, Y, 2) = 1 — dzyz + 2% + 2222 + y*2* € Pos(3,4) \ 2(3,4).
(c) Schmiidgenf™] polynomial [Sch79]:

2) +2(y* — 4)]
49)%] € Pos(2,6) \ X(2,6).

fSchmﬁdgen(xa y) = (y2 - l’2>$(l’ + 2)[I(I -
+200[(z® — 42)2 + (y° —
(d) Berg—Christensen—Jensen?] polynomial [BCJ79]:

fBerg—Christensen—Jensen(x’ y) =1- x2y2 + ZL’4y2 + x2y4 S POS(27 6) \ 2(2’ 6)
= fMotzkin(x7 y) + 2.1'23/2.

(e) Harriﬁ polynomial [Har99, Ry in Lem. 5.1 and 6.8]:

frtaris (2, y) = 16270 — 362%y* + 202%y* + 202%y°® — 362%y® + 16¢'°
—362% + 572%? — 38xty* 4+ 572%y° — 361°
+202° — 38z%y? — 38x2y* + 20y°
+ 202" + 572%% + 209*

— 3622 — 36y°
+ 16 € Pos(2,10) \ X(2,10).
10Choi 7?7
Lam 777
HKonrad Schmiidgen (born 11 November 1947, Grifendorf (Saxony))
12Berg 777
Christensen 777
Jensen 777

B3Harris 777
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4.4. Schmiidgen’s Theorem and Positivstellensatz

Definition 4.4.1. Let S = {¢1,...,9:} C R[zy,...,x,] be finite, n,s € IN. We denote
by Kg the basic closed semi-algebraic set by

Kg:={z €Nlg(z) >0forali=1,...,s}.

We denote by T the preordering™]

Ts := Z 0. g°|0c € ER[@H, s 7I”]2

ec{0,1}*

Schmiidgen’s Theorem 4.4.2 ([Sch91]). Letn € N, L : Rxzy,...,z,] = R be a linear
functional, and S = {g1,...,9s} C Rlz1,...,x,] for some s € N such that Kg C R™ is
compact. The following are equivalent:

(i) L is a Kg-moment functional.
(ii) L(g{ -+ g% - h?) >0 for all h € Rlzy,...,x,] and ey, ..., e, € {0,1}.

Schmiidgen’s Positivstellensatz 4.4.3. Let n € N and S C Rlxy,...,x,] be finite
such that Kg is compact. Then for any f € Rlxq, ..., x,] with f(z) >0 for all x € Kg
we have f € Tg.

5. Truncated Moment Problems

5.1. Moment Cone

Definition 5.1.1. Let V be a finite dimensional real vector space of measurable functions
f: X — R on a measurable space X. Let A ={ay,...,a,} be a basis of V, d € N. We
define the set M of A-integrable measures on X’ by

Mp = Mp(X) :i={pne M(X)|a,...,aq are p-integrable}.

Lemma 5.1.2. Let V be a finite dimensional real vector space of measurable functions
on a measurable space X with basis A = {ay,...,aq4}, d € N, such that a;(X) C R.
Then 6, € M for all v € X.

Proof. We have
[ aitv) d8.0) = aa) < R
X
foralle=1,...,d. O

WP+ T CT, TTCT,anda? €T forallac A
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Definition 5.1.3. Let V be a finite dimensional real vector space of measurable functions
on a measurable space X and A = {ay,...,aq} be a basis of V. Let a;(X) C R for all
1 =1,...,d. We define the moment curve sa by

a1 ()
sa: X > RY 2
aq(z)

We define the moment cone Sa by

Sp = {/XSA(@ dp(z)

Lemma 5.1.4. Let X be a measurable space, V be a finite dimensional real vector space
of measurable function on X and A = {aq,...,aq}, d € N, be a basis of V. Then Sa is
a convex cone.

MEMA}.

Proof. Clear, since the integral is linear in the measure. m

5.2. Supporting Hyperplanes
Definition 5.2.1. Let d € N and K C R? be a convex cone. For v € R? we say that

H, :={z € R?| (z,v) = 0}
is a hyperplane with normal vector v and
HY = {z € RY|{x,v) >0}

is the corresponding halfspace.

We say H is a containing halfspace ifft S, C H. We call H, a supporting hyperplane
iff S, € H and H, N Sa # 0. Additionally, we say H, supports Sa at s € Sa iff H, is
a supporting hyperplane and s € H,. For s € Sy we define the normal cone Nora(s) by

Nora(s) := {v € RY| H, is a supporting hyperplane of Sp at s}.

Definition 5.2.2. Let d € IN and K C R? be a convex cone. Then we call K* defined
as
K*:={veR'|KCH}

the dual cone of K.

Definition 5.2.3. Let K be a convex set. We say a face is a convex subset ' C K such
that Ax + (1 — Ny € F for some z,y € K and A € (0,1) implies x,y € F. An exposed
face F'is a face of K such that there exists a hyperplane H with F' = K N H.

18
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Definition 5.2.4. Let f: X — R be a real function. We define the zero set Z(f) by

Z(f) = {z e X|f(x) = 0},

Lemma 5.2.5. Let V be a finite dimensional real vector space of measurable functions
on a measurable space (X,2A) and A be a basis of V. Let H, be a supporting hyperplane
of Sn. Then H, N Sa is a moment cone on (Z,AU|z) with Z = Z({v,sa(-))) and
dim Sp N H, < dim Sa.

Proof. 1t is clear that dim Sa N H, < dim Sax. By a change in the basis A we can assume
that v = (0,...,0,1) and hence agz > 0. Therefore, s = (s1,...,84) € Sa N H, implies
sq = 0 and

0=s54= /ad(:p) du(z)

for all u € Ma(s) and all s € SxN H,. Then Z = Z(ayg) and A|z ={M N Z|M € 2A}.
For any = € Z we have a4(x) # 0, so s4 # 0, and hence sa(z) € SaN H,. Hence, SANH,
is the moment cone on (Z,2|z). O

Proposition 5.2.6. Let V be a finite dimensional real vector space of measurable functions
on a measurable space X. Then there exist point xq,...,xq € X with d = dimV such
that every vector s € R? has a signed k-atomic representing measure with k < d and all
atoms are from the set {x1,... x4}

Proof. Let A be a basis of V and since they are linearly independent there are points
T1,...,74 € X such that the matrix (sa(z1), ..., sa(zq)) € R¥? has full rank. Therefore,
for any s € R? we have

s =c1sa(x1) + -+ + casa(zq) = /SA(ZE) d (Z ciégh) (x)

i=1

with (c1,...,cq) = (sa(z1), ..., sa(zq)) ts. O

5.3. Richter's™® Theorem

Richter’s Theorem 5.3.1 ([Rich7]). Let V be a finite dimensional real vector space of
measurable functions on a measurable space X. Then any moment functional L : YV — R
has a k-atomic representing measure with k < dim ).

Proof. We prove the theorem by induction on the dimension dim V. Let A = {a4,...,aq}
with d = dim V be a basis of V and S, the moment cone.

Let d=1,ie.,V =a-Rforanae€ V\{0}. Since L:V — R is a moment functional,
there exists a representing measure pu:

L(a) = / o(z) dp(z).

15Hans Werner Richter (2 Mai 1912, Schonefeld (Leipzig) — 3 December 1978, Munich)
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If L(a) = 0, then L = 0 and v = 0 is a 0-atomic representing measure. So assume
L(a) # 0. Since u is non-negative, there exists a x € X such that sign a(z) = sign L(a).

Hence,
1) = 2% o) = [t a (525,)

and therefore % -0, is a l-atomic representing measure of L.

Now let d > 1 and s := (L(ay),..., L(aq)) € Sa be the moment sequence of L. We
have dimSp = dimV = d. Let § := cone sp(X), i.e., by Carathéodory’s theorem every
s € §is a moment sequence represented by a k-atomic measure with £ < d. Additionally,
we have that int S is non-empty, i.e., S is full dimensional. Assume int S # int Sa, then
let s € int (Sa \ intS) since S C Sa and the difference set has non-empty interior.
Let 1 be a representing measure of s. Then there exists a separating linear functional
[ such that I(s) < 0 and [(t) > 0 for all t € S. Since sa(z) € § C Sa we have
a(x) :=Il(sa(x)) > 0 for all z € X and hence

a>0on X but /a(x) dup(z) =1(s) <0

which contradicts the non-negativity of u. Hence, we have intS = int Sp and every
s € int Sp has a k-atomic representing measure with k& < d.

Now assume s € Sy N OSa. Then since Sp is a convex cone there exists a supporting
hyperplane H, at s. But then SAN H, is by Lemma |5.2.5|a moment cone with dimension
less than dim ) and here the theorem holds by induction. O

The replacement of integration by point evaluations was already used and investigated
by Gauiﬂ [Gaulb]. k-atomic representing measures are therefore also called Gaussian
cubature formulas.

The history of Richter’s Theorem [5.3.1]is confusing and intricate and often the corresponding
references in the literature are misleading. For this reason we take this opportunity to
discuss this history in detail. First we collect several versions of Richter’s Theorem [5.3.1]
occurring in the literature in chronological order.

A) A. Wald 19397 [Wal39, Proposition 13]: Let X = R and a,(z) := |z — zo|®
with d; € Ngand 0 < dy < dy < --- < d,, < oo for an g € X.

B) P. C. Rosenbloom 1952 [Ros52, Corollary 38e]: Let (X,2) be a measurable
space and a; bounded measurable functions.

C) H. Richter 1957 [Ric57, Satz 4]: Let (X, ) be a measurable space and let a;
be measurable functions.

D) M. V. Tchakaloff 1957 [Tch57]: Let X C R" be compact and a,(z) = 2,
la] < d.

16Carl Friedrich Gau8 (30 April 1777, Braunschweig — 23 Februar 1855, Gottingen)
1"Received: February 25, 1939. Published: September, 1939.

18Received: December 27, 1956. Published: April, 1957.

Pyblished: July-September, 1957.
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E) W. W. Rogosinski 1958 [Rog58, Theorem 1]: Let (X,2l) be a measurable
space and let a; be measurable functions.

From this list we see that T'chakaloff’s result @ from 1957 is a special case of Rosenbloom’s
result from 1952 and that the general case was proved by Richter and Rogosinski
almost about at the same time, see the exact dates in the footnotes. If one reads
Richter’s paper, one might think at first glance that he treats only the one-dimensional
case, but a closer look reveals that his Proposition (Satz) 4 covers actually the general
case of measurable functions. Rogosinski treats the one-dimensional case, but he also
states that his proof works for general measurable spaces. The above proof of Richter’s
Theorem [5.3.1] and likewise the one in [Schi7, Theorem 1.24], are nothing but modern
formulations of the proofs of Richter and Rogosinski without additional arguments. Note
that Rogosinki’s paper [Rogb8] was submitted about a half year after the appearance of
Richter’s [Rich7].

It might be of interest to note that the general results of Richter and Rogosinski
can be easily derived from Rosenbloom’s Theorem by the following simple trick. Let
A = {ai,...,a,} be (finite) measurable functions on (X, ) and set B = {b1,...,bn},
where b; 1= % with f:=1+ 37" af. Then

se€ESg & veMg:s= /SB(x) dv(z) & s= ?(f)) dv(z) = /sA(x) dp(x)

& I eEMp:s= /SA(I) du(r) & s€ Sy with du= f'dv

Since all functions b; are bounded, Rosenbloom’s Theorem applies to B, so each sequence
s € Sg = Sa has a k-atomic representing measure v € Mg(s) with & < m and scaling
by f~! yields a k-atomic representing measure pu € Ma(s):

k

k
s= ZCZ' - sp(w;) = ZZI )

i=1

- salzy).

Richter’s Theorem[5.3.1] was overlooked in the modern literature on truncated polynomial
moment problems. It was reproved in several papers in weaker forms and finally in the
polynomial case in [BT06]. But Richter’s Theoremfor general measurable functions
was known and cited by J. H. B. Kemperman in [Kem68, Theorem 1] and attributed
therein to Richter and Rogosinski. In the moment problem community succeeding
Kemperman the general form of Richter’s Theorem was often used, see e.g. [Kem'1,
eq. (2.3)], [Kem87, page 29|, [FP01, Theorem 1, p. 198], [Ana06, Theorem 1], and [Las15,
Theorem 2.50].

6. Carathéodory?Numbers

20Received: August 22, 1957. Published: May 6, 1958.
21Constantin Carathéodory (13 September 1873, Berlin — 2 February 1950, Munich)
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In this section we treat results on the Carathéodory number which appeared in [Rich7,
dDS18,, [RS18, [dDK21], [dDS22].

6.1. Definition of Ca(s) and basic Properties

Definition 6.1.1. Let L : V — R be a moment functional from a finite dimensional
space of real measurable functions f : X — R resp. s € Sa, A basis of V, its moment
sequence. Let X’ be a measurable space. Then

Ca(s) = C(L) := min{k | u € Ma(s) is k-atomic}
denotes the Carathéodory number of s resp. L (= Ls). Let Sa be the moment cone, then

Ca = max Ca(s)

is the Carathéodory number of Sa.

Definition 6.1.2. Let V be a finite dimensional real vector space of measurable functions
f: X = R and A be a basis of V. For any k£ € IN we define the moment map Sa by

k
Sak [0,00)k x XF 5 RIMY (e e, 1, , L)) > ZC" - salz;).
i=1

Additionally, we define Sa , := range Sa .

Lemma 6.1.3. Let V be a finite dimensional real space of measurable functions f : X —
R on a measurable space X with basis A. The following holds.

(1) Sa = conv cone sa(X).
(1) Ca = min{k | Say is conver}.
(ZZZ) SA,O - {O} g SA,l _g_ SA’Z g cee SA,CAfl g S/—\,CA == SA,CA+1 - ...

Proof. (i): Follows immediately from Richter’s Theorem [5.3.1}
(ii): Since sa(X) C Say for all k € IN we have that

Sa = conv cone sa(X) C convconeSa ;= Sak

for all k& € IN such that Say is convex, i.e., Co < min{k|Say is convex}. But since
Sa = Sac, is convex, we also have Ca € {k|Say is convex}.

(iii): Follows immediately from the minimality of Ca by its definition. Because if
Sar = Sapt1 for some £ € IN we have Spap = Say for all [ > k, especially for | =
dim V < oo and hence Sp = Sa and k > Ca. O
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Lemma 6.1.4. Let V be a finite dimensional real space of measurable functions f : X —
R on a measurable space X with basis A and a € V., such that Z(a) is finite. Then for

5= ZSA(x) € Sa

zeZ
we have Ls(a) =0 and
Ca(s) = dimlin {sa(z) |z € Z(a)} = rank (5a(7))zez(a) (3)
and therefore
Ca > rank (sa(¢))acz W

Proof. The last equality in is clear by linear algebra. By definition of s we have that
s is in the relative interior of the face F' C Sp which is spanned by sa(z), x € Z(a). By
Carathéodory’s Theorem we have that s is the convex conic linear combination of
rank (sa(z)).cz extreme points sa(z), z € Z(a). then follows from the definition of
Ca. O

Remark 6.1.5. The previous result no longer holds if Z(a) is infinite. Take e.g. a = 0
for an infinite X. o

(d — 1)-Theorem 6.1.6. Let V C C(X,R) be a d-dimensional vector space such that
there is a e € V. with e > 0, X be a measurable and topological space which consists of
at most d — 1 path-connected components, A be a basis of V, and let L : V — R be a
moment functional. Then

C(L)<d—1

and
Ca <d-—1.

Proof. Since L is a moment functional we have that it has by Richter’s Theorem [5.3.1]
a k-atomic representing measure p = Zle ¢i -0y, with B < dimV = d. Assume k =d
and let s be the moment sequence of L for a basis A of V. W.lLo.g. ANV, # (. Then

s € conv cone {sa(xy),...,sa(zq)}

Since X has at most d — 1 path-connected components at least two points x; belong to
the same path connected component of X. W.l.o.g. these two points are z; and x5. Let
v :[0,1] = & be a continuous path between z; = v(0) and x5 = y(1). Then

s € conv cone {sa (1), sa(y(t)), sa(z3), ..., sa(xq)}

for ¢t = 1 and by letting ¢t N\, 0 the convex cone shrinks and degenerates to a (d — 1)-
dimensional cone by continuity of sa. Hence, for some ¢t € [0,1) we have that s lies on
the boundary of the cone, i.e., it needs only d — 1 atoms. O
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6.2. The Carathéodory number for L : R[z]<; — R on X =R
We denote

|z] == max{k € Z|k < x} and [z] ;= min{k € Z| k > x}.

Theorem 6.2.1 ([Ric57]). Let X =R, d € N, V = Rlz]<q with A= {1,...,2}. Then

d+1
- [141]

Proof. (a) Let d be even: Let s € int Sp be a moment sequence and by Richter’s Theoremm
let p = Zle ¢; - 0y, be a representing measure of s, ie., s = Zle ¢i - sa(x;). Let

B := {y4, 44 1x,..., 2%} be the homogenization of A, i.e., V" = R[x, y|4 on the projective
space Y = P!, We set t := Zle c; - sg(w;, 1) € int Sg. Since Y is compact and V" are
continuous with 1 € ¥V we have that Sg is pointed and closed. Hence, we have for any

p € P! that

Ap 1 intSp — (0,00), w— ANw) :=max{l >0[t—1-sg(p) € Sg}
is well-defined and we have
t':=t—XNao(t) - s8(1,0) € 0Sg
and t' has by construction no atom at (1,0). Let U be an open neighborhood of ¢, then
U= {u =u—Aao)(u) - sg(1,0)} C IS

is part of the boundary of Sg and no v’ € U’ has an atomic representing measure with
an atom at (1,0). By continuity of B there exist a ¢ > 0 such that

t =1t — )\(175) . SB((1,8>> el

Hence, all atomic representing measures v of t” have not (0,1) as an atom. Since
t" € U C OSa N Sa there exist a p € Rlz] with p > 0 and Ly (p) = 0. By Lemma
we have supprv C Z(p), i.e., v has at most g atoms. In summary, with

sg(l,e) = g . sg((e71,1)) = g sa(e™)

and the dehomogenisation we find that s has a g + l-atomic representing measure, i.e.,

d d+1
< — = |—.
CA_2+1 ’V 7 —‘

It remains to show that Ca £ g. Assume we have Cp < %. Then take s € Sa and a Ca
atomic representing measure p with atoms at xy,...,z¢,. Then p(z) := Hfil(a: —x;)% €
Pos(1,d) with Lg(p) = 0, i.e., s € OSa. Hence, Sp has no interior which contradicts
dim Sp = dim R[z]<q = d + 1. Therefore, we have Ca = £ + 1.
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(b) Let d be odd: Since d is odd we have that d+1 is even. So let s € Sa be a moment
sequence with a k-atomic representing measure p. Since p only contains atoms, we have
that sqp1 [ 297 du(z) € [0,00), ie., ' := (s, 5441) € Sg with B = AU{z?"'}. But after

homogenization we remove the atom (1,0), to get a k-atomic representing measure with
k < L which represents s but not s’ since sq.1 is altered by sg((1,0)) = (0,...,0,1).

Hence, after dehomogenization we find that s has a k-atomic representing measure with
k< % = (%w The last equality holds since d was odd. O]

In the previous proof we actually proved in a side step the following homogeneous
version.

Corollary 6.2.2. Letd € N and V = Rz, y]=2q with monomial basis B on X = P! = S'.
Then
CB =d+1

and s € 0Sg if and only if Cg(s) < d.

6.3. A Lower Bound for differentiable Functions

Theorem 6.3.1. Letn € N, X C R" open andV C C™4 (X, R) be a finite dimensional
real vector space with basis A. Then

dimV
> .
Ca = {n—l—l—‘

Proof. Let d = dim V), then Sa C R? is full dimensional. From the moment map

Sak i [0,00)" x X% = R (c1,...,chy @1, ..., Tp) > ZQ"SA(%)

and therefore the total derivative
DS Ak (C, x )

= (sA(xl), ooy Sa(xr),eq - Orsa(xy), ... c1 - OnSal(Tr), ¢ - Sa(xa), ..., ¢ - SA(Ik)>

c Rk(n-ﬁ-l)xd.

A regular point (¢, x) is such that DSax(c, ) has full rank, i.e., we need k > {niﬂw By

linear independence of A we have that & < d. Hence, the regularity fulfills n-d+ 1 >
n-d=Mn+1)-d—d>max{0,k-(n+1) —d} and we can apply Sard’s Theorem [A.5.2]

By Sard’s Theorem the regular values of Sa are dense in R¢ and therefore dense
in Sp, i.e., there are s € Sy which need at least k > LL%J atoms in a representing

measure. O
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Remark 6.3.2. H. M. Mollei?] [M&I76] gave for V = R[z, y]<ar—1, k € IN, the lower bound

Ca > (’“‘2”) + EJ — M(k).

But from Theorem we have the lower bound [% (2’“; 1)1 and hence for k£ > 4 we
have

(7 )]z B o

Remark 6.3.3. For polynomials R[z1, ..., x,]<q the lower bound can be improved by the
Alexander—Hirschowitz Theorem [AH95]. o

Remark 6.3.4. The regularity V C C4"*1(X,R) can be improved. But for V C C(X,R)
Theorem does in general not hold, e.g., for space filling curves. o

Example 6.3.5. For any d € IN there exists a surjective f = (fi,..., fs) € C([0,1],[0,1]%),
i.e., a space filling curve [Sag94]. Let V =1lin{fi,..., fs} and therefore A = {f1,..., fa}
be a basis of V. Then Sy = [0,00)% and Cp = 1.

Proof. Since f : [0,1] — [0,1]? is surjective we have Sp = [0,00)? and for any s € Sa
we find a ¢ € (0,1) such that c¢- s € [0,1]¢. Since f is surjective there exists a z € [0, 1]
such that f(z) = c¢- s and hence s = fol fly) d(c™t - 6)(y). O

Remark 6.3.6. The previous example can even be extended to an infinite dimensional
space by taking the Ny-dimensional Schb'nber space filling curve f : [0,1] — [0, 1].0

6.4. Lower Bounds on C(L) for L : R[z,y]<og — R on X C R? open

Theorem 6.4.1. Let d € Ny, V = Rz, y|<aq with monomial basis A on X C R? with
non-empty interior. Then
Ca > d*.

Proof. Since X C R? has non-empty interior we can (after a translation and scaling)
assume that {1,2,...,d}> C X. Under this translation and scaling V = R[z,y]<2q
remains unchanged.

Set f(z,y) = (x —1)*---(z —d)?* + (y — 1)*--- (y — d)* € Pos(2,2d) with Z(f) =
{1,...,d}*. We want to apply Lemma i.e., we show rank (sa(z,y))sy=1
Since the row rank is equal to the column rank we have that

-----

.....

It is therefore sufficient to show that W := R[z, y]<2| (1.2 Das full dimension d*. For

that it is sufficient to show that any p: {1,...,d}* — R is in W. By linearity of W it

22H. Micheal Msller, Prof. i. R. TU Darmstadt
ZTsaac Jacob Schoenberg (21 April 1903, Galati, Kingdom of Romania — 21 February 1990, 777)
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is sufficient to show that for any a,b =1, ..., d the characteristic function

1 for (z,y) = (a,b),

0 otherwise

X(a,b) (ZL', y) = {

is in WW. We have that

o — o —

Pl (.9) 1= cap (@ = 1)+ (=) (w = d) - (y— 1)+ (=) -+ (g — d)

for some ¢, € R is such a polynomial. O

6.5. Lower Bounds on C(L) for L : R[xy,...,z,)<g — R on X C R"

Definition 6.5.1. Let Rz, ..., z,| be the polynomial ring with the natural grading
and let I C Rz, ...,z,] be a homogeneous ideal. Let

R =Rlzo,...,x,]/1

be the quotient ring which is a graded ring itself. The Hilbert function HFR of R is
given by HFp(d) = dim Ry where R, is the degree d part of R.

Lemma 6.5.2. Let I C R[zy,. .., x,] be an ideal and I" C Rz, . .., z,] be the homogeni-
zation of I, i.e., the ideal generated by the homogenizations f* for all f € I. Then the
dehomogenization map induces an isomorphism of vector spaces

(Rlzo, ..., 2]/ TM)a  —  Rlzy, ..., 20]/1)<a
for all d > 0.
Proof. Clear. O]
Example 6.5.3. Let n € N, I = (0) and R := Rz, ..., z,]/I = Rzg,...,x,]. Then

the Hilbert function H Fg is given by

n-+d
HFg(d) = HFRizg,...0n) = ( > °

n

Lemma 6.5.4. Let n,d € N and A be the monomial basis of Rlxy, ..., x,|<q. Let
I' C R™ be a set of finitely many points and I be its vanishing ideal. Then

dimlin {sa(z) |2 € T} = dim(R[zy, . .., 2,]/1)<qg = dim(R[zo, . . ., 2]/ I")g = HEF;(d).
Proof. Follows from the definition of the Hilbert function and Lemma [6.5.2] m

Definition 6.5.5. Let R be a commutative ring. A sequence fi,...,f, € R is a
reqular sequence if for all ¢+ = 1,... r the residue class of f; is not a zero divisor in

R/(fh s 7fz'—1)-
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Lemma 6.5.6. Let I C Rz, ...,x,] be a homogeneous ideal and R = Rlxo, ..., x|/
with Hilbert function HFg. Let fi,...,f, € R be a reqular sequence of homogeneous
elements of degree d. Then the Hilbert function HFgyy, .1y of R/(f1,-.., fr) is

r

HFpyp,.p0(G) =Y (1) (Z) CHFR(j —i-d).

1=0

Proof. We prove the statement by induction on r. The case r = 0 is clear. In order to
prove the induction step, let R® = R/(fy,..., f;) for i =0,...,r. For all j € Z we have
the exact sequence

r—1 Jfr r—1 T
0O —- R-, — R~ — R — O

Therefore,
HFRr(j) == HFerl(j) - HFerl(j - d)

By induction hypothesis this implies that
— r—1
HEw ) = S0 (") HEal =0

- i—l)i (") e - G-

]

=5 (7 ()] e
- S () HFp(j —i-d). =

i=0 !
Lemma 6.5.7. Let n,d € IN and set
pi = (zi — x0) - -+ (w5 — dy)

fori=1,...,n. The following holds:

(i) The sequence py,...,p, is reqular.

(11) The ideal generated by pr, ..., p, is radical.
(i11) Let fi,..., [n be a reqular sequence of homogeneous functions f; of degree d. The

Hilbert function HFg, of R, := Rlxo,...,z,]/(f1,.. ., fa) is
HFy, (k) = ;(—1)1' : (Z‘) - HFpy(k —i - d).

In particular, we have
2
HEp, (2d) = <n+ d) . (n—l—d) N (n)
n n 2
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and

2d + 1 d+1 1
HFRn(2d+1):(n+ * )—n-(TH * >+3-<”+ )

n n 3

Proof. (i): p; is a monic polynomial over R[z| in the single variable ;.
(ii): Follows from [Alo99, Thm. 1.1].
(iii): Since HFg,(k) = ("I*) for k > 0 and HFg,(k) = 0 otherwise, Lemma [6.5.6]

implies the statement. O

Hilbert’s Nullstellensatz 6.5.8. Let IK be an algebraically closed field and J C K[z, . ..

be an ideal. Then
IV(JI) =VJ

where we have

V(J):={z e K" | f(z) =0 forall f € J},
IV):={f eKlxy,...,x,]| f(x) =0 for allz € V}, and
VI ={feKlxy,...,x,]| [T € J for somer € N}.

Theorem 6.5.9. Let n,d € N and X C R™ with non-empty interior. For even degree
V =Rlzy,...,2,|<2q we have

Cn . > (n+2d> . (n+d)+(n>
: n n 2

and for odd degree V = Rlxy, ..., Ty <0a+1 we have

n+2d+1 n+d+1 n+1
Crvn = (M) o () 5 ()

Proof. Since X C R™ has non-empty interior, there is a ¢ > 0 and y € R"™ such that
y+e-{1,...,d}" C X. The affine map 7' : X' — X, x — y + € - x shifts the moment
problem on X to X' = ¢ (X —y) with R[zy, ..., z4<p = R[z1,...,2,)<poT with D =
2d or 2d+1 and hence {1,...,d}" C X’. Sow.l.o.g. we can assume I" := {1,...,d}" C X.

Set p; = (z; — 1) -+ (z; — d) and p{ their homogenizations. Then by Lemma [6.5.7(i)
the sequence pf, ..., pl is regular and I := (pf,...,p") is radical, i.e., V(I) = I'* and by
Hilbert’s Nullstellensatz we have I(T") = I(V(I)) = /I =I. Then

Lemma 6.1 emma [6.5.4
Ca > dimlin{sa(z)|z € [} ™25 (D).
The HFy(D) are then given in Lemma [6.5.7(iii). O

Example 6.5.10. Let D € N, d := L%J, and let L : R[zy,...,2,]<p — R be a moment
functional with representing
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Then

(n+2d>_n_<n—|—d>+<n) for D = 2d,
n n 2

C(L) = )

(n+2d+1) . (n+d+1)+3_ (n—gl—l) for D — 2d+ 1.
n n

Corollary 6.5.11. Let n,d € IN and X C R" with non-empty interior. Let V,q =
Rlz1, ..., %Tn]<a with monomial basis A, 4. The following hold:

Ca.,.

d Zl—%forallnelN.

(1) liminf
d—o0 n,d

(i1) For any d > 4 and ¢ > 0 there exists a n € N large enough such that there ezists

a moment functional L : Rlxy,...,x,]<a = R on X with
n+d
G = -9 ("7,

6.6. {sa(z)|z € A} Countable

Theorem 6.6.1. Let X be a set and V be a finite-dimensional vector space of real
functions [ : X — R with basis A and let {sa(x) |z € X'} be countable. Then

CA = dim V

Proof. Let P = {p1,...,pr} € X with k = |P| < dimV. Then the cone Cp spanned
by sa(p1),--.,sa(pk) is at most dimV — 1 dimensional. Since X is countable and |P| <
dim V), there are only countably many such P C X. But since Sp is full-dimensional, it
is not the countable union of cones of dimension at most dim) — 1. Hence, there are
moment sequences which need dim V' point evaluations. O
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Part II.
Applications and More

7. Finding atomic representing Measures

7.1. Flat Extension

Definition 7.1.1. Let d, D € INy be such that d < D. Let s = (Sa)ae]]\]g:‘(ﬂgzD be a real
sequence and set s* = (Sa)aemg:\a|g2d~ We say s is flat with respect to s° if

rank Hp(s) = rank H,(s").

We say a linear functional L : Rz, ..., z,]<ep — R is flat if the corresponding sequence
s with s, = L(z®) for all a with |a| < 2D is flat, i.e., there is a d < D such that s is
flat with respect to s° = (sa)a:(a|<2d-

Flat Extension Theorem 7.1.2. Letd, D € No withd < D. If L : Rlz1,...,2,]<2p —
R is flat with respect to Ly = L\R[ml _____ en)<sq then L has a unique extension to a linear
functional L Rlz1,...,2,] = R such that L is flat with respect to Ly. If L(p?) >0 for
allp € Rlxy,. .., xp)<0q, then L(q?) >0 for all ¢ € Rlzy, ..., 2,].

The unique extension of a flat functional is called flat extension.

The proof of the theorem is too lengthy for the lecture. We therefore refer the reader
to the original literature of Curtd®] and Fialkowf”| [CF96, [CF98]. See also [Lau09] and
[Sch17]. The main application is the following.

Theorem 7.1.3. Letd,D € N and L : Rlxy,...,z,|<op — R be a flat linear functional
with respect to Ly := L|Rfe,.....z0]<pq With L(p®) = Lo(p®) > 0 for all p € Rlz1, . .., Tp]<sa.
Then L is a moment functional with a rank H(L)-atomic representing measure.

Proof. Since L is flat with respect to Ly and Lo(p*) > 0 for all p € Rlzy,. .., Tm]<d
we have by the Flat Extension Theorem that there exists a unique functional
L : Rlzy,...,x,] — R such that L is flat with respect to Ly and L(p*) > 0 for all
pE ]R[xll...,xn].
Since L(p?) > 0 for all p € R[zy,. .., z,] we have
L(fg) < L(f*)- L(¢*)
for all f,g € R[xy,...,2,]. Then

N; ={f €Rlzy,...,x,) | L(fg) =0 for all g € R[zy,...,x,]}

24Ranl Enrique Curto (unknown)
ZLawrance Fialkow (unknown)
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is a radical’" ideal in R[z1, ..., z,). Then
Di = R[$1, . ,xn]/./\/i

is finite dimensional with dim D; = rank % (L) =: r. To see this let A") = (h,w 5)pena
be column vectors of H(L). For p(z) = 3, ;2" we have

Zcz‘hau),ﬂ =L (Z Cixa(iuﬂ) = L(p(z) - 2”)

i=1
for all 5 € INj. Hence,

o

R .. A" linearly independent < 2% ... ,xam) linearly independent in Dj

and therefore r = rank #(L) = dim D;. Hence,

(Div<'> >) with <f>g> = i(f,g)

is a finite dimensional (real) Hilbert space. For ¢ = 1,...,n define the multiplication
operators
MlDZ_>Dl~M f|—>flfzf,

then (My,..., M,) is a set of commuting symmetric operators on a finite dimensional
Hilbert space and hence they possess a common set of (real) eigenvectors ey, ..., e, and
have the eigenvalues y; ;:

Miej = yije;
foralli=1,...,nand j =1,...,7. Set y; := (Y1j,---,Yn;)’ € R" for j = 1,...,7.
Since 1 € Dj and ey, ..., e, a basis of Dj, we write 1 = > m;e; and we set p =
>, mid,. Then

L(p) = (p(z) - 1,1)

= Z (p(My, ..., My)m;e;, m;e;)

= Zp(yj)m? = / p(y) du(y). O

Lemma 7.1.4. Let n,d € N, A, 4 be the monomial basis of Rlxy,...,x,]<q and resp.
Anoq of Rlxy, ..., xn]<0q. Letyy,...,yx € R" for somek € N. Let L : Rz, ..., 2n)<00 —
R be represented by p = Zle ¢i0y,. Then

k
Ha(L) =i sa,a (i) sa,..()" (5)

=1

26 Assume 1 ¢ N;, otherwise N; = R[z1,...,2,] and L = 0. If f* € N; for some k > 2, then
[L(fE=1)] < L(1) - L(fA+E2)) = 0.
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and
rank Hq(L) < k.

The following are equivalent:

(i) rank 320 sa, . (4) - sa,(u)" = k.

(11) y,,- .., 0y, are linearly independent over Rz, ..., x,]<a-

(i4) sa, ,(y1), - - 5A,.4(Yr) are linearly independent.

Proof. s,(y;) - sa(x)T has the entries 2 and since the matrix H(L) is a sum of k
matrices sa(y;) - sa(y;)? and the rank of sa(y;) - sa(y;)? is one, we have rank Hy(L) < k.

(i) < (i): Let f =3, 4<a far® and f = (fa) be the coefficient vector. Let h(®) be
the a-th column of Hy(L) and e, be the a-th basis vector. Then

? ZfaHd Zfa Zfazcjyj SAnd y] Zc] T SAnd y])'

Since ¢; # 0 and range Hq(L) is contained in the span of vectors sa, ,(y1), .., sa, . (Uk),
it follows rank H,(L) = dimrange Hq4(L) = k if and only if the d,,,...,d,, are linearly
independent on Rz, ..., %,]<q4.

(i) < (iii): Clear. O

Theorem 7.1.5. For every d > 2 there is a N € IN such that for every n > N there
exists a moment functional L : Rlzy,...,x,]<2qa — R which has no exstension to L' :
Rlz1, ... xn]<aqa = R with L' flat but L" : Rlxy, ..., zn)<sar2 — R is flat.

Proof. By the (d — 1)-Theorem we have C' := C(L) < ("ZQd) — 1, ie., set p =
ZC 0y, with &, linearly 1ndependent on R[z;y...,2,)<24- Then Lo : Rz, ..., 2,) = R
has finite rank (rank H(Le) = C) and is therefore flat.

Let L : R[xy,...,2,]<ea — R as in Example . Let D € IN be the smallest such
that the extension Lpyy to R[zy,. .., Zp]<opyo is flat but Loo|rpay.....zn]<0p 18 NOt. Assume
D = 2d — ¢ for some ¢ € N. From the condition C(L) < (”+D) that the Hankel matrix
of the flat extension must be at least the size of the Carathéodory number of L we find
that

. (n-l—id—c) L (n+2nd—c) (n—;Zd)
LS Dy T (" C(L)
~——
—1 by Cor.

(2d—c+1)---(2d)

= 1li =0.
nHoe (n+2d —c+ 1) - (n + 2d)
A contradiction, i.e., ¢ = 0 must hold and therefore D = 2d. n
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Example 7.1.6. Consider the moment functional L : Rlzq,...,2,]<0a — R from
Example [6.5.10| supported on the grid {1,...,d}". For this example we have that

(n,d) = (9,2), (7,3), and (6,4)

are already small examples where we have to extend it to the worst cast D = 2d. Even
for d = 10' the worst case extension is already necessary for n = 51. o

7.2. The generalized Eigenvalue Problem and Finding Atomic
Representing Measures for L : R[zy,...,2,]<0¢g & R on X = R”

Definition 7.2.1. Let m € IN and A, B € R™*™ be two symmetric matrices. A vector
v € R™ is called an generalized eigenvector and X € R the corresponding generalized
eigenvalue if Av # 0 and

MAv = Bv (6)

holds. @ is called generalized eigenvalue problem (for A and B).

Note, even for symmetric matrices A € R™*™ there are only rank A many eigenvectors
and -values (counting multiplicities).

Example 7.2.2. Let

A=111 -17 35 —65 131
—-17 35 —65 131 =257
35 —65 131 257 515

and
-5 11 —-17 35 —65
1 —-17 35 —-65 131
B=1-17 3 —65 131 —257
35 —65 131 =257 515
—65 131 —257 515 —1025
Then the generalized eigenvalue problem AAv = Bw has the eigenvalues A = —2, —1, 1.0

Theorem 7.2.3. Let L : Rlzy,...,2,]<2q be a flat moment functional and let p =
Z?Zl iy, k = C(L), be the unique representing measure with c; > 0 andy; = (Yi1, ..., Yin) €
R™. Then for each j = 1,...,n we have that the j-th coordinates yi ;, ..., yx; are exactly
the set of generalized eigenvalues (counting multiplicities) of

)\de1 (L)U = ,del(XjL)U.
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In fact there are vy, ..., v, € range Hq_1(L) \ {0} such that Hg—1(L)v; # 0 and
YijHa1(L)v; = Ha 1 (X;L)v;

foralli = 1,...;k and j = 1,...,n. For all other v € rangeH, 1(L)* we have
del(Lﬁ) =0.

Proof. Since L is flat we have that by Lemma [7.1.4

k
Hd—l(L) - Z G+ SAn,d—1<yi) ’ 3An,d-1(yi)T
i=1
and
k
Ha 1 (XGL) =Y i Yig - a0 (W) - 5n,0s, (00)"
i=1
as well as that sy := sa, ,,(¥1),.., 5 = Sa,,_, (&) are linearly independent.
Hence, for each i = 1,..., k we therefore have that there exists a v; € range Hq—1(L) \

{0} such that (s;,v;) = &;; for all [ = 1,..., k. We therefore have

k
del(L)Ui = ZCZ'/ © Syt Sg; UV =C; S # 0
——"

=1

:51',1"
and
k
Hd—l(XjL)Ui = Z Cir * Yyt 5+ Sit* Sg Vg =Ci Yt Si = Yy Hd—l(XjL)Ui-
=1 g
Since vy, ..., v is a basis of lin {sy, ..., si} = range Hy_1(L) we have that for all
velin{sy,...,sp}" =lin{vy,..., 0} = range Hq_1(L)*

we have Hq_1(L)v = 0. O

Example 7.2.4. Let
s = (5,—5,11,—17,35, —65, 131, —257, 515, —1025) € R'°.

Then H4(s) = A and H4(Xs) = B in Example and hence the generalized eigenvalues
are A = —2, —1,1. From linear algebra we find

S = QSA(—Q) + QSA(—l) + SA(l),

i.e., s has the representing measure y = 20_5 + 20_1 + d; and is therefore also a moment
sequence. o
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8. Waring®’| Decomposition

8.1. The Apolar Scalar Product and Powers of Linear Forms
Definition 8.1.1. Let n,d € IN. We set
Npg:={aeNj|la|=a1+ - +a,=d}

and
Hpa = Rlz1, ..., 20)a

Definition 8.1.2. Let n,d € IN. With

d d! d!
al =ay! -, and ( )::—:—

« ol ag!lap!

for a € N, 4 let

ple)=> (Z)-aa-xa and  qla)= > (Z)-aa-xa (7)

aEN, 4 aEN, 4
be homogeneous polynomials in H,, ;. We define the apolar scalar product |-, -] by
d
p,q| = a%ﬁ (a) Qg by
Lemma 8.1.3. Letn,d € N. Then (Hua,[-, -]) is a Hilbert space of dimension (";ﬁ;l).
Proof. Clear. O

Corollary 8.1.4. Let n,d € IN and p € H,, 4 written as in (@) Then
[p7 .,L,a] = Qq
for all a« € N, 4.

Definition 8.1.5. Let n,d € N and y = (y1,...,y,) € R". We denote by a-b =
a1by + - - - + a,b, the standard scalar product for all a,b € R™. We define

)= o = 3 () e

OCE]Nn’d

the d-th power of the linear form y - x.

2TEdward Waring (1736, Old Heath (near Shrewsbury, UK) — 15 August 1798, Pontesbury (Shropshire,
UK))
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Theorem 8.1.6. Letn,d € N, p € H, 4, and y € R". Then

b, (v )] = p(y).
Proof. Write p as in (7)), then from Definition we get
d
b (v )= > (a)aa-y“:p(y)- O
OéGNn,d

Remark 8.1.7. For a,b € R™ we have [(a-)?, (b-)4] = (a-b)¢, ie., a L bin RYiff (a-)? L
(b-)% in H, 4. Hence, if yi,...,y, € R? are pairwise othogonal, then (y;-)%, ..., (y.- )¢
are pairwise orthogonal. o

Corollary 8.1.8. Let n,d € N and U C R"™ be open and non-empty. Then
lin {(y-)*|y € U} = Hpa-

Proof. C is clear. To prove 2O note that (H,q,[-, -]) is a Hilbert space and hence let
p €lin{(y- )|y € U}* C H,q. Then

ply) "EEE D, () =0

for all y € U. Since p is a polynomial equal to zero on an open set U C R™ we have
p = 0 which proves the inclusion D. O

Theorem 8.1.9. Let n,d € N. Then {(a-)? |« € N, 4} is a basis of Hy.a.
Proof. For g € N,, 4 we define

n Bj*l
H H dJJJ —1 1‘1 +. n)) € Hn,d-
7j=1 =0
We have
n Bj—1
:H H(dﬁj—z’d) =d?. Bl £0.
j=1 i=0

For a # 3 there is an index j such that o; < f; and hence an ¢ with ¢ = o;. Therefore,
fs(a) contains a factor daj —a;d = 0, i.e., fzg(a) = 0. In summary we have [f3, (a-)¢] =
0 for a # B and [fs, (8-)Y # 0 and therefore all (a-)? with @ € N, 4 are linearly
independent. Since |N,, 4| = dim #H, 4 it is a basis. O

Definition 8.1.10. Let n,d € N. {y;,...,y,} C R" with = |N,, 4| is called a basic set
of nodes if {(y1-)%, ..., (y,- )%} is a basis of H, 4.

Definition 8.1.11. Let n,d € N. Let FF = {f,|a € N4} and G = {ga | @ € N,, 4} be
two bases of H, 4. We say that F' and G are dual bases if

[fcw gﬁ] - 60475
holds for all a, 8 € N, 4.
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Remark 8.1.12. For dual bases I and GG we have

h= > [hfa ga= Y [h el fa

aede aeNnd

for all h € H,, 4. o

Theorem 8.1.13. Two subsets F' = {f,|a € N4} and G ={go | € Nya} of Hya for
a set of dual bases if and only if they fulfill the Marsden identity

= Y fal®) - gal

aeNnd

for all z,y € R%.
Proof. Suppose F' and G are dual bases, then
Rem. B 112
(y ) "= faly) - ga (8)
aENn,d

and hence the Marsden identity holds.

Conversely, assume that the Marsden identity holds. Then holds on R™ and
since by Corollary the (y-)¢ span H,q we have that G spans H, 4. DBut since
|G| = dim H,, 4 we have that G is a basis. Then

9a(@) = [gas ()] = Y [9as Jo] - g5(2)

BGNnd

and since G is a basis we have [g,, f3] = 04,5 for all o, 8 € N, 4. O

8.2. The Apolar Scalar Product and Differential Operators

Definition 8.2.1. Let n,d € N and o = (v, ..., ) € INj. We define

0
ox;

In the same way we define p(0) for p € R[zy, ..., z,].
Lemma 8.2.2. Let n,d,r € N, y1,...,y, € R", ¢1,...,¢, € R, and let

= Z Cp - (yz )d S Hmd-
1=0

Forp e M, with k < d we have

0; ==

and 0% =00"---00".

p@O)f=d-(d=1)---(d+1—k ch yir )

Let y € R" and p € H, 4, then

pO)(y)* = d! p(y).
In particular, if p(y) = 0, then p(d)(y-)? = 0.
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Proof. Let o € N, ;. Then
0%y - ) =0 -9 (y - )
=d-(d=1)---(d+1=k)-yf* -y - (y-2)""
=d-(d—1)---(d+1—k)-y*-(y-z)*F
By linearity the statements follow. O
Lemma 8.2.3. Letn,d € N and p,q € H,q. Then

p.d) = p(0) = a(O)p

Proof. By symmetry of the apolar scalar product it is sufficient to prove the statement
for p(z) = (¥)2* and ¢(z) = 2° for all o, B8 € N,, 4.

a # [: Then [p, q] = 0 and 9“z* = 0.
a = : We have 0“z® = a! and hence
1 Lid\ o o o o4\ o o
0= (Dora = 1= D)oo = ) 0

Corollary 8.2.4. Let f = Zle i+ (yi ) € Hpq with y; € R™ and ¢; € R, then

%f( p_f7 ZCZ

Lemma 8.2.5. Let n,d,D € N withd < D. Forp € Hy,p, ¢ € Hpa, and f € Hypp—d
we have

D-[p, fglp = (D = d)!- [f,4(9)plp-a,

where |-, -] is the apolar scalar product on H, .

Proof. With Lemma [8.2.3| we get
Dl [p, falp = (fa)(O)p = f(0)(q(0)p) = (D — d)! - [f, a(O)p]p-a- O

8.3. Moment Functionals and Waring Decomposition

Definition 8.3.1. Let n,d € IN. We set

i=1

War(n, d) := {f € Hna

k
f= Z(yz )% for some k € No, y1,..., % € ]R”}

and
Pos"(n,2d) := {f € Hpoa| f > 0}.

For f € W(n,d) any f = Zle(yi~ )4 is called a Waring decomposition of f.
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Corollary 8.3.2. Let n,d € N. Then War(n,2d) and Pos"(n,2d) are closed convex
cones in Hy oq with

War(n, 2d) = Pos"(n, 2d)* and  Pos"(n,2d) = War(n, 2d)*.

Proof. That War(n,2d) and Pos"(n,2d) are convex cones is clear. That Pos"(n,2d)
is closed is also clear. We show War(n,2d) is closed. Let (fix)rew € War(n,2d) be a
sequence such that f, — f € H,24. By Carathéodory’s Theorem we have

c

fe =) (yri-)™

i=1

with C' < dim H,, 54 < co. Expanding the 2d-th powers we find (yy;-7)*? = (yr121)%* +
et (ykz,i,nxn)Zd + ... and since the coefficients converge we have that there is a ¢ > 0
such that |lyr|| < cforallk € Nandi=1,...,C. Hence, by the Heine-Borel Theorem
there is a subsequence (k;)jew € IN such that y,,; — y; € R" for alli = 1,...,C and

hence f = chzl(y, )24 € War(n, 2d) which proves closeness.

For the duality identities we have 0 < f(y) = [f, (y-)??] for all y € R" iff 0 < [f, w]
for all w € War(n,2d) which proves Pos”"(n,2d) = War(n,2d)*. From War(n,2d) C
Pos"(n, 2d)* we get

Pos"(n,2d) = War(n, 2d)* 2 Pos"(n, 2d)™* = Pos"(n, 2d)
where the last equality holds by the bidual theorem. O]
Theorem 8.3.3. Let n,d € IN.
(i) For each f € War(n,d) we have that Ly : H, 4 — R defined by

1
Ly(p) := ./ (O)p = [f.p]
forallp € H, q is a moment functional.

(ii) For each moment functional L : H,q — R there is a unique f € War(n,d) with
L = Ly and we have

k

p= Z% eM(L) & f=) (u)

i=1

Proof. (i): Since f € War(n, d) we have f = 3% | (y;-)? and hence Ly (p) = S5, p(yi) =
[p() d (35,6, @)

(ii): Since L : H,,g — R is a moment functional there exists by Richter’s Theorem [5.3.1]
a representing measure g = Zle ¢ - 0, with ¢; > 0. Hence f = Zle ¢+ (z)4 =
Zle(yi- )* € War(n, d) with y; = #/¢;-z;. Uniqueness follows from Riesz Representation
Theorem. O
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Theorem 8.3.4. Let n,d € N and set hy2q(z) := ||z||** = (22 + -+ + 22)%. Then
hn2qa € War(n, 2d)

and for any u € St there is a € > 0 such that

for some y1, ...,y € R™.

Proof. Denote by o the surface measure on S"~!. We define
ha)i= [ (0 doly
Sn—

for all z € R™. Since (y - z)?? is homogeneous in z we have h € H, 4. Since o is
invariant under rotation in y € R"™ we have that h is invariant under rotation in x € R"
and therefore h(z) = ¢ - ||2[|?? with ¢ := h(£) > 0 for any & € S™ L.

Define L(f) = [, f(y) do(y). Then L(p) > 0 for all p € Pos"(n,2d) \ {0} and
hence L € int Pos"(n,2d)*. Therefore, for any u € S"! there is a ¢ = £(u) > 0 such
that L := L — &6, € Pos"(n, 2d)*, i.e., L is still a moment functional. By Richter’s
Theorem L has finitely atomic representing measure Zle ¢;i05, and hence L has a
finitely atomic representing measure €9, + Zle ¢i0z,. In summary,

K3

k k
¢ hnoa = L((y- )*) = e(u)* + ZQ(xz ) = Z(yz )% € War(n, 2d). |

i=1 =0
We remind the reader that A := 9% + -+ + 9?2 is the Laplace operator.
Theorem 8.3.5. Let n,d € IN. Then
L:Hpoa— R, p+— Lp):= Ap
is a moment functional such that L(p) > 0 for all p € Pos"(n,2d) \ {0}.

Proof. We have A% = h,,94(9) and therefore L(p) = hy,24(0)p = (2d)! - [hy24, p] by
Theorem [8.3.3(i). Since hn2q € War(n,2d) by Theorem we have that L is a
moment functional by Theorem [8.3.3|(1).

Let p € Pos"(n,2d) \ {0}. Then there is a u € S"~! such that p(u) > 0 and therefore

L(p) = (2d)! - [hn20,p] = (2d)! - [e(u)*",p] = (2d)! - £ - p(u) > 0

by Theorem O
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8.4. The Carathéodory Number and the Waring Rank

Hilbert’s 17th problem states:
For any f € R[zy,...,x,], is it true that f > 0 on R" implies that f is a

2
sum of squares of rational functions f =), z—g?
1

Artin proved the general™| case [Art27]. Pfister showed that 2" squares are sufficient
[Pfi67]. We are therefore also interested in how many d-powers are required in a Waring
decomposition.

Definition 8.4.1. Let n,d € IN. We define the Waring rank W(f) of f € War(n, 2d)
by

W(f) := min {/{: € Ny

k
f= Z(yi~)2d for some y1, ...,y € R”} .

i=1

We define the Waring rank W(n,2d) by

W(n, 2d) := fonax W(f).

Theorem 8.4.2. Let n,d € N and f € War(n,2d). Then

W(f) = C(Ly).
Proof. Follows immediately from Theorem [8.3.3] (ii). O

Theorem 8.4.3. Let n,d € IN. Then

n+2d—1 n+d—1 n—1
2d) > —(n—1)- :
i () o (1) ()
Proof. Combine Theorem [8.3.3] Theorem [8.4.2) and use the special (affine) case from
Example|6.5.10, Since Example|6.5.10|is affine we have by (de)homogenization to replace

n by n — 1 in Example [6.5.10] 0
Corollary 8.4.4. Let n,d € N. The following hold:
W(n,2d —1
(i) 1iminf£>1—n = for alln € IN.

d—o0 dim%n72d - A

(ii) For any d > 2 and € > 0 there exists a n € IN large enough such that

Wi(n,2d) > (1 —¢) - (“ _n1_+12d>.

28R replaced by an arbitrary closed field.
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9. Tensor Decomposition

9.1. Definition
Definition 9.1.1. Let d € IN, V be a vector space and let V* be its dual. Then

V)=V -0V
N————

d-times

is the d-tensor space over V. Let wy,...,wy € V* and vy,...,v4 € V. Then we have the
action on the elementary tensor wy ® --- ® wy given by

(w1 ® -+ @wg)(vy,...,0q) :=wi(v1) -+ wa(vy).
A tensor t € (V*)®4 is called symmetric if
t(Vo(1)s - - -5 Vo(ay) = t(v1,. .., 0q)
for any permutation o of {1,...,d}.

Example 9.1.2. Let n € IN. Then R" ® R™ = R™*". For w;,wy € R" the elementary
tensor w; ® ws fulfills

(w1 @ wa)(v1,v2) = (W, v1) - (wa, vs) = (v] - wy) - (w3 - vy)

i.e., we have the identification w; ® wy = w; - wl € R™*", o

9.2. Decomposition of Symmetric 2d-Tensors

Question 9.2.1. Given w € (R")®¢ be a symmetric tensor. When can we write w as

k
0= 0® S )
=1

How do we find the wy, ..., wqg € R™ and the minimal k € Nyin (@?

Theorem 9.2.2. Let n,d € N. Then a symmetric tensor w € (R™)®* can be written
as in (9) if and only if w(z,...,z) € War(n, 2d) C Rlzy, ..., x,| with x = (z1,...,z,).

Proof. Set p(z) = w(x,...,z). The statement follows immediately from
(0, @ @wi)(w,...,2) = (Wi, 2)*" = (Wia@1 + - + Wipnwn)*. 0

Corollary 9.2.3. The minimal k in (@ is the real Waring rank of w.

10. Derivatives of Moments and Moment Functionals

The following section gives an overview of results presented in |[dD19| [dD23al.
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10.1. Derivatives of Linear Functionals and Measures

Example 10.1.1. Let a < b and X[, be the characteristic function of the set [a,b]. Set
i as di = X[qp dz. Then the moments of u are

i b i 1 - b pe+1l _ gk+1
Sk /R:v w(x) /a " dx {k_le La T

But we of course have

b
/ Oy dp(z) = / k-ab ™t de = [2%)5_, = b* — d~.
R a

On the other hand let us assume we can do partial integration and we can do the
following:

/ Op® dp(x) = / (0pz") - Xa,p) Az = —/ zr . Oz X[ap) dT = —(a* —b*) = b* — o
R R R ——
d(éa*(;b)
Here we take the derivative of a non-differentiable function, i.e.,
(X[a,b})/ = 6& - 56
in the distributional sense [GruQ9]. o

Definition 10.1.2. Let n,d € N (or d = o0) and L : Rxy,...,2,] = R be a linear
functional. For any a € INjj we define the derivative 0“L of the linear functional L by

0L := (-1 )'al L oo,

ie., (0°L)(p) = (=1)l*l. L(9*p) for any p € R[zy, ..., x,]. For any 3 € IN? we define the

derivative 0%sg of the moment sz by
0% := (9°L)(2”) = (=1)l*- L(9"2).
For a (moment) sequence s = (sg)gens we define the derivative 0%s := (0%sg)gens .

Lemma 10.1.3. Let n € N, L : Rlzy,...,2,] — R be a moment functional, and
a € Ny \ {0}. The following are equivalent:

(i) O“L is a moment functional.
(ii) 9°L = 0.

Proof. (ii) — (i) is clear. So we prove the inverse direction, i.e., let 9“L be a moment
functional. Then (9%L)(1) = (=1)l* . L(921) = (=1)l*. L(0) = 0. O
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Definition 10.1.4. Let n € IN, u be a (signed) measure on R” such that all moments
are finite, and a € INjJ. If there exists a (signed) measure v such that

v(f) = (=1 w(@*f) (10)
for all f € C°(R™) then we say that the derivative 0% := v of the measure p exists.

Example 10.1.5. Derivatives of the Dirac measure dy are not measures. For k € IN let
fi(x) == 1 -sin(k* - ). Then

(00)(fr) = k- cos(0) =k — o0
as k — oo which contradicts || fx|lcc — 0 as k — o0. o

Theorem 10.1.6. Let n € N, « € N}, and L : Rlzy,...,x,] — R be a moment
functional with representing measure . If 0% exists on Rlxq, ..., x,], then 0% is a
signed representing measure of 0°L, i.e.,

ss=ue’) = (@) =0

for all B € INg.

Proof. Since 0% exists on R[zy, ..., x,] we have
@) (a’) B (@?) B (ora’) "B sy, s

Besides the Dirac measures also measures of the form f dA" are very important, where
A" is the n-dimensional Lebesgue measure and f is a measurable function.

Definition 10.1.7 ([Gru09, Eq. (3.2)]). Let f € LL_(X) and A" the n-dimensional

loc

Lebesgue measure on X'. We define the distribution Ay by

Af(g) = /Xg(x)f(x) d\"(x), for all g € D(X).

Theorem 10.1.8 ([Gru09, Eqgs. (3.15) and (3.21)]). Let o € INjj. Then
0“Ap = Npoy, for all f € Li, (X). (11)

10.2. Polytope Reconstruction

The problem of reconstructing a (convex and full-dimensional) polytope P C R", i.e.,
finding all vertices, is an extensively studied question and several algorithms have been
proposed, see e.g. [Bal61, MNGS, MR&(, LRI2, MVKWI95, [GMV99, BGLOT, (GLPRI12,
GNPR14) IGPSS18|, [KSS18], and references therein.

Based on derivatives of moments we will present a simple proof of one version of these
algorithms which calculates the vertices from finitely many moments

So = /:ca -xp dN"(z).
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We use the Brion-Lawrence-Khovanskii-Pukhlikov-Barvinok (BBaKLP) formulas [Bri88|
Law91, Bar91l, PK92l, Bar92] and the generalized eigenvalue problem.

Let us state the BBaKLP formulas. This presentation is taken from [GLPRI2]. Let
P be a polytope in R" with vertices vy,...,vx (k > n+ 1), then

k
0 = Z(vi,ﬂjf)vi(r) forall j=0,...,n—1, (12)

i=1
see [GLPRI12, Eq. (3)], and for j =n,n+1,... we have

o
/P(:E,r)j d"z = si(r) = 'ZU“ D, (r), (13)
i=1

see [GLPRI2, Eq. (4)], where D, (r) is a rational function on r € R", i.e., r can be
chosen in general position such that D,,(-) has no zero or pole at r. The s;(r) is the
J-th directional moment with direction r.

Definition 10.2.1. Let k,n € IN, P be a polytope with vertices vq,...,v, € R", r €
R™\ {0} a vector (of length 1), a € R, and H,, := {z € R"|(r,x) = a} be an affine
hyperplane with normal vector r. We define the area function ©p, to be the (n — 1)-
dimensional volume of P N H, ,

Ory iR = R, @ Ory(a) i voba (P Hea) = [ xe(y) X (0)

where A"~ is the (n — 1)-dimensional Lebesgue measure on H,.,.

Of course, the area function is integration by parts

50) = [ @ e v = [ e a).

The area function ©p, is a continuous piecewise polynomial function of degree n if r is
not a normal vector of any facet of P.

Lemma 10.2.2. Let r € R" be a vector of unit length such that D, (r) is non-zero and
well-defined, i.e., its numerator and denominator is non-zero. Then

k
" Nop, = Y _Dy(r) - dpuy. (14)

Proof. Set y := (x,r). From for j =0,...,n—1 we have

/yj-(?”@pr( dy = (— /8” @pr = =

(v;, T>jDU. (r)

k
i
1

7
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and from with 7/ > 0 we have

/ Y 0 Op,(y) dy E (1) / O"y™ - Op,(y) dy

= CV LI [ 0, 00) dy = 3 D),

1
J i=1

Here (x) and (+) hold since supp ©p, is compact. Thus the claim follows since the set
of polynomial functions on a compact set K is dense in C*°(K). m

In the previous proof the BBaKLP formulas were used for all monomials 3’ (j € INy)
and the Weiserstral Theorem gives the assertion. But the proof of the lemma can be
weakened to the Miintz—Szasz Theorem [Miinl4, [Sz416], i.e., only monomials {y% };cw
with D, o dl,- = oo (and d; = 0) are necessary. Additionally, the BBaKLP formulas
hold only for polynomials but the previous lemma applies to all C"-functions. So we
have the following.

Theorem 10.2.3. Let A be a (finite-dimensional) vector space of measurable functions
on R with basis A = {a1, as, ...} such that DA C A, i.e., 9*A C A for all d € N. Let
P C R" be a polytope with vertices vy, ...,vx, k > n+1, r € R™ be such that it is neither
a pole nor a zero of any f)vl( -), and consider the directional moments

s; = si(r) = /Paj((x,r>) dA\"(z).

Then O™s has an at most k-atomic signed representing measure

k
anA@P,r = Z D, (T) ’ 5<Uz‘ﬂ”>
=1

supported only at the projections (v, r) of the vertices v;.

Proof. Since s has the representing measure Ag,,, the 9"s has the at most k-atomic

representing (signed) measure 9"Ag,, = Zle D, (r) - O(v;ry by Theorem (10.1.6 and
Lemma [10.2.2 O]

Corollary 10.2.4. Let P C R" be a polytope with vertices vy, ... v, k > n+1 and
let r € R™ be such that it is neither a pole nor a zero of any D,,(-), and for j =
0,...,2k —n+1 let s; = sj(r) be the directional moments

s; = / (z,r) dA\™(z).
P
Then the projections &; := (v;, r) are the eigenvalues of the generalized eigenvalue problem
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Proof. As in Theorem [10.2.3[ s = (s;)7%5" has the representing measure Ag,, and 9"s
has the at most k-atomic representing (signed) measure 0"Ag,,, = Zle D, (r) - g 1)

by Theorem [10.1.6{ and Lemma (10.2.2 By Theorem the positions & = (v;,r) are

the eigenvalues of the generalized eigenvalue problem ([15). O

Remark 10.2.5. In [GLPRI12, Eq. (5)] a “scaled vector of moments” is defined in a similar
way as 0"s. However, the strength of Theorem [10.1.6] in particular in combination with
Theorem [10.1.8], has not been used. o

Remark 10.2.6. With n+ 1 different directions r the vertices can be reconstructed using
the previous theorem and (n+1)(2k —n)+ 1 moments are required. If k is unknown, the
previous theorem also determines k if sufficiently many directional moments are given.o

Now we extend Definition [10.2.1] to functions f:

®f,r(x) = f(y) d)‘n_1<y)7 (16)

Hr,z

i.e., integration by part over H, .
By linearity of integration and differentiation Corollary [10.2.4]also detects the vertices
v, 7 =1,...,d;, of full-dimensional polytopes P, C R", j = 1,...,p, from the moments

x(r) = / ) (@) () (17)

of the simple function
p
X = Zci “XP, (i €R, ¢; #0) (18)
i=1

if the P; or ¢; are in general position. We say that a set { P;}!_,; of polytopes is in general
position iff v; ; # vy j for all (4, j) # (i/,j"). Furthermore, we say that ¢y,...,c, are in

general position iff
P d;

M= Z Z G+ D'Ui,j (T) ’ 5(vi,j,7") (19)

i=1 j=1

has non-zero mass p((v; j,7)) # 0 for € R™ in general position, i.e., coefficients in
do not cancel out for vertices v; ; with the same projection (v; ;,7).

Theorem 10.2.7. Let P, C R", i =1,...,p, be full-dimensional polytopes with vertices
vij, J = 1,...,d;. Let the vertices v;; or ci,...,c, be in general position. Let d :=
di+---+d,. Then for a directionr € R"™ in general position the projections & ; = (r,v; ;)
are the eitgenvalues of the generalized eigenvalue problem

Ha(M10"s)y; j = & jHa(0"s)yi (20)

where sq, ..., S2q_n+1 are the directional moments of @
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Proof. By linearity of 9" and Lemma [10.2.2| we have that

is a (signed) representing measure of 9"s (Theorem (10.1.6). Then (9"Ae,, ) ({7, v;;)) # 0
for all 4, j since the v;; or ¢; are in general position. Hence the projections (r,v; ;) are
the eigenvalues of by Theorem [7.2.3] O

11. Gaussian Distributions and Mixtures

11.1. Reconstruction of One Component

For a Gaussian distribution g(z) = ¢ - exp(—%(x — b)) on R we have
g(x) = —a(z =b)-g(zr) = —az-g(z)+ab-g(x). (21)
So integration over z' - ¢'(z) gives
—i-8.1 = (0s); = —a-(Mys);+ab-s; = —as;y1+ab-s;, forallie Ny, (22)
see also [AFS16, Eq. (5)]. This implies the following result.

Lemma 11.1.1 ([AES16, Prop. 1]). Let k € N, k > 2, be a natural number and
s = (80, 81,-..,5k) be a real sequence with sy # 0. The following are equivalent:

i) s is the moment sequence of the Gaussian distribution c - exp(—%(z — b)?) with
a,b,ceR,a>0,c#0, ie,s;=[a" c-exp(—%(z—b)?) da.

ii) There are a,b € R with a > 0 such that the matriz

0 S0 S1
—3S0 S1 S9
(08,8, M18)k_1 = -2 5 Sg  S3

—(k—1)-Sp—2 Sk—1 Sk

has rank two with kernel (1, —ab,a)” - R.

2
. 50 _ 81 — . a
In this case, one has a = prv— b= 3 and c=so \/;
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Proof. While (i) = (ii) is clear, we show (ii) = (i) by induction on i. Since 0 # sy =

¢ [em®@0" dg for ¢ = s - V% and s_; := 0, we have by (ii), , and the

induction hypothesis that
a-Siyq :i-si,1+ab~si
= /Gxi -c-exp(—a(z — b)?) dz + /ab -2’ c-exp(—a(z — b)?) da
= /[—a:i(—aa: +ab) +ab-z'] - c- exp(—a(z — b)?) da

:a~/:ci+1~c~exp(—a(a:—b)2) dz foralli=0,...,k—1,

i.e., s;41 is the (i + 1)-th moment of ¢ - exp(—a(z — b)?). O
On R™ we have the following.

Theorem 11.1.2. Letn € N, A = (ay, ..., a,) = (a;;) =, € R™" be a symmetric and
positive definite matriz, b€ R, c € R, ¢ # 0, and k € IN with k > 2. Set

g(z) == c- e 2@ OTA@D),

For a multi-indezed real sequence s = (Sa)ae]l\]g:|a|§k the following are equivalent:

i) s is the moment sequence of Ay, i.e., so = [ g(x) dN"(z) for all o € N} with

la| < k.
i) Fori=1,...,n the matriz (0;s,s, M, s, ... M., s)k—1 has the 1-dimensional kernel
(1, —(b,a;),ai1,...,a;in)  R. (23)
Proof. For 1 =1,...,n we have
0=20:9(z) — (b,a;) - g(x) + a;a1x1 - g(x) + -+ + @i py - g(). (%)

(i) = (ii): From (%) we find that is contained in the kernel of the matrix

(0s8, 8, Me,s, ..., M., $)k—1. It suffices to show that the kernel of the matrix (09;s, s, M, s, . ..

is at most one-dimensional. Consider

S0 Seq ce Se,,
Se;y S2¢, -v. Seite

H = ",
Se,,  Seiten v S2¢,,

the Hankel matrix of LR, ,....e,)<,- Let d = (do,...,d,) € ker H. Then 0 = L,({d, (1, 1,...

.....

[(do + dyz1 + -+ + dyxy,)? dAy(x) implies d = 0, i.e., H has full rank n + 1. Therefore
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(0ss, 8, Me,s,..., M., s); has rank at least n + 1 since it has H as submatrix. Its kernel
can thus be at most one-dimensional.

(ii) = (i): Let O € R™™ be an orthogonal matrix such that O-A-OT = diag (A1, ..., \,),
A; > 0. The coordinate change on R" given by y = Ox induces a linear transformation
on the space of moment sequences. Let t = (to)jaj<x be the moment sequence obtained
from s via this transformation. A straight-forward calculation shows that

ker(@it, t, Me1t7 C. )Ment)l = ker(@it, t, Melt, ey Ment>k71
= (1, =X;bi,0,...,0,,0,...,007 - R,

where b = Ob. This means that we are in the 1-dimensional setting

ker(ai(tj'ei)fzb (tj'ez')?:lv Mez‘ (tj'ei);?:l) = (17 _)‘ibia )‘i)T ‘R
where the 1-dimensional assertion holds by Lemma(l1.1.1] Hence, ¢t = (¢3) is represented

A1 A, = det(A) gives the n-dimensional assertion. O

The inverse transformation z = OTy together with

Hence, the previous theorem provides an easy way to determine A € R"*" and b € R"
from the moments s,,.

Algorithm 11.1.3.
Input: k€ N, k > 2; s = (8a)acnr:|al<k-
Step 1: Fori=1,...,n:
a) Calculate ; and a; = (a;q, ..., ain) from

ker<ai87 S, M€187 tee Mens)l = <1a _5i7 ai,la s 7ai,n) : R

- If the kernel is not one-dimensional, then s is not represented by one
Gaussian distribution.

b) Check: (1,—Bi,ain,...,a;,) € ker(0;s, 8, Me, S, ... M, $)k—17
- If FALSE: s is not represented by one Gaussian distribution.
Step 2: Check: A = (a; )} ;= is symmetric and positive definite?
- If FALSE: s is not represented by one Gaussian distribution.

Step 3: Calculate b= A" (B1,...,B.)T and c = yVdet(4) So.

an/2

Out: “s is represented by a Gaussian distribution”: TRUE or FALSE. If TRUE: A,
b, c.
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11.2. Lower Bounds on Components in a Gaussian Mixture from
finitely many Moments

Theorem 11.2.1. Let n,d € IN. Let p € Rlzy, ..., z,)<24 be a non-negative polynomials
with finitely many zeros zy, ..., zx. Then there exists a moment sequence s € int Sp and
an open neighborhood of s contained in the moment cone Sp such that s has a Gaussian
mixture representation which needs at least

dimlin {sa(z)|i=1,... k}

many Gaussians but not less. All variance matrices can be chosen to be equal and
dropping this restriction does not reduce the number of needed Gaussians.

Proof. See [dD23a]. O

Corollary 11.2.2. Let d € IN and € > 0. Then there is an n € IN such that there is a
moment functional L : R[xq,. .., 2x,)<0a = R which can be written as a sum of

(1—e). (2d;—n>

Gaussian distributions but not less.

12. Moments and Partial Differential Equation

12.1. The Heat Equation acting on Moment Sequences: Gaussian
Mixtures

The results presented here are published in [CdD22].

Definition 12.1.1. Let n € IN. The set of Schwartz functions S(R™) is defined as
S(R") := {f € C°(R",R) | ||z* - 9° f(2)]|0c < 00 for all o, B € Ny}.
Theorem 12.1.2. Let n € N and uy € S(R™). Then the heat equation
Owu(z,t) = Au(x,t)
u(z,0) = ug
has the unique solution u(z,t) = (O *x ug)(x) € C*(]0,00),S(R™)) where O; is the heat
kernel ) ,

@t(.f) = W -e 4t

and x denotes the convolution. If additionally ug > 0, then u(-,t) >0 for all t > 0.

For more on the heat equation see, e.g., [Eval(, Ch. 2.3]. For ug € S(R™) all moments
of the measure u(z,t) dz exist and are time-dependent.
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Definition 12.1.3. Let n € N, uy € S(R") with uy > 0, and u be the solution of the
heat equation. We define the time-dependent moment from the heat equation by

Sa(t) ::/ - u(z,t) de with o€ INj.

Therefore, s(t) := (sa(t))acny is @ moment sequence with representing measure
with dy(z) = u(z,t) do for all ¢ > 0. The 1-parameter family s(¢) of moment sequences
describes a curve in the moment cone.

Lemma 12.1.4. Letn € N, ug € S(R™), and u be a solution of the heat equation. Then
the moments s, (t) of u(x,t) dz fulfill the following.

(1) sa € R[t] with

e[+ 3]

for all o = (aq,...,a,) € Np. The coefficients of s, only depend on the moments
s3(0) of ug with f < «, i.e., f; < aj forallj=1,...,n

(11) Forn =1 and all k € Ny, we have

k
Sok(t Z 2/{: 2] © Sok—2;j (0) - i
=
and
2+ ) ;
52k+1 Z 2k 1o 2] 32k+1—2j(0) -t
]=O
Proof. (i): Let a = (ay, ..., ) € INj. Since u solves the heat equation, we have

Orsa(t) = 8t/ - u(z,t) do = / - Opu(z,t) do
= / % Au(x,t) dz,

and since u(-,t) € S(R™) for all ¢ > 0, we apply partial integration

_Z/n - u(w,t) Z/nax -Oju(x,t) do
_ Zl/n(a;xa)-u@,t) d — /Rn(ma) cu(z,t) da
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where 0; 1= %. With e; denoting the n-tuple with j-th coordinate equal to 1 and zeros

elsewhere, this implies

Aa® = (@ -+ )" = ay- (= 1),
j=1

This gives
Bisalt) =ty (0 = 1) 502 (1) (21)
j=1
with initial values s,(0) and with s o, (t) = 0 for all a with a;; < 1forsome j = 1,...,n.

Now observe that is a recursive system of ODEs. We proceed by induction. Let
a = (o,...,0,) with a; € {0,1}. Then the degree bound holds since 9;s,(t) = 0, i.e.,
Sa(t) = s4(0). Hence, integrating gives

degs,(t) =1+ max deg 5q—2¢, (1)
j=1,..., n

_ LEJ TR {%J TR {%J
L2 2 21"
(ii): From (24)) we get Oyso(t) = 0, i.e., so(t) = s0(0), and
Ops2j(t) =27+ (2] — 1) - s95-2(1) (25)
as well as 0;s1(t) = 0, i.e. s1(t) = s1(0), and
Ors241(t) = (27 +1) - 25 - $25-1() (26)
(25) and can easily be solved by recursion, thus establishing (ii). ]

Definition 12.1.5. Let n € N and d € INU {co}. For a sequence s = (54(0))aenz:|al<d,
la| == a1 + -+ + ay,, we define

ps = (ps,a)aewg:|a|§d C R[t]
where p; , are the polynomials s, () as in Lemma [12.1.4]

Corollary 12.1.6. Let s,s" be (real) sequences and a,b,t1,ta € R. p has the following
properties:

(i) ps(0) = s,
(ii) Pp, ) (t2) = ps(ts +t2), and

(i01) Pasibs =@ Ps+b- Py
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Proof. (i) and (iii) are clear. (ii) follows from the semi-group property of the heat kernel:
O, * (O, % ug) = Oy, 44, * Up. O

Example 12.1.7. For n =1, k € Ny, and p,; the polynomials in Lemma [12.1.4(ii) we
have

pso(t) = so(t) = s0(0)

psa(t) = s1(t) = s1(0)

Ps2(t) = s2(t) = s2(0) 4 2s¢(0) - ¢

Pes(t) = s3(t) = s5(0) + 65,(0) - ¢ (27)
paa(t) = s4(t) = 54(0) + 1255(0) - t + 1250(0) -

Pes(t) = ss5(t) = s5(0) + 20s3(0) - t + 60s,(0) -

Theorem 12.1.8. Let k € N, N € NU {oo}, p1,...,0x € R", ¢1,...,cx € R, and
t1,...,tp €[0,00). Set T :=min;t; and s := (Sa)aecNn:|aj<n With

k
Sq 1= / {L’a dlLLo(ZL') a,nd ILLO(ZL‘) = Zci : @tl(x - pZ)
n =0

Then for all t € [—T,00) we have that the sequence p4(t) is represented by

k

pe(x) i= Zci O qt(T — pi).

=0

Proof. By Lemma and the linearity of the integral (moments), in the measure
(), it is sufficient to show the statement for & = 1. Now, for ¢ € (—t1,0), the
statement follows from the semi-group property of the heat kernel, i.e., ©; % O, _; = Oy,;
for t € (0,00), it follows from ©; x ©;, = O, 4. It remains to treat the special case
t = —t;. This case follows from

/ % Oz — ) dx =0 / % doy, (z) = xf
for all & € INy. O
Definition 12.1.9. Let n € N and d € NU {o0}. For s € S; we define
Js:={t € R|ps(t) € Sa}.
Theorem 12.1.10. Letn € N, d > 2 ord =00 and s € Sg\ {0}. Then

Js =[-05,00) or (—0g,00)
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with
0; € |0, B2 100 S2en
2n - s
For d = oo we always have
Js = [—05,00)

and for d > 2 (finite) we have
Js =[-04,00) if and only if ps(—0s) € IS4 N Sy.
Proof. We prove the statements first for finite d > 2 (part (a)) and then for d = oo (part

(b))-

(a): Let d € N with d > 2 and s € Sy \ {0}. By Definition [12.1.9 we have 0 € T, i.e.,
Js #0.

(a-1) We show that if ¢ € J, then [¢,00) C J,. Let ¢ € J5. Then by Definition [12.1.9]
we have s’ := ps(c) € Sy and, since d > 2 is finite, by Richter’s Theorem [5.3.1| there

exists an at most k = (”;d)—atomic representing measure

C; - 5931
1

k
M:

2

of s’ with ¢; > 0 and x; € R"™. Moreover, by Theorem for all ¢ > 0 we have that
ps(c+ t) is represented by a non-negative Gaussian mixture. Hence, ps(c +t) € Sy for
all t > 0 and [c,00) C J,.

(a-ii) We show that 0, := —infyeq, t < B2 520 VW have

2n-sg

n

Ly (@i +20) = Pone(t) =Y 2, +2n50 -t > 0, (28)
=1

=1

which implies the bound on ¢ resp. its infimum 9. By (a-i) we have (—d,,00) C Js.

(a-iil) “Ts = [—0,,00) if and only if p,(—0d,) € Sy follows directly from (a-ii) and
Definition 12.1.9]

(b) We now prove the statements for d = oo.

(b-1) We show (—05,00) € J,. Let k € IN, s = (Sa)aens € Soo, and denote by sl € S
the moment sequence truncated up to order £, i.e., s := (Sa)jaj<k- Then (94, Jren is a
non-increasing sequence > (. Hence,

0, = lim o, >0
k—o0
exists and 0, < 0y, implies

(_087 OO) - ﬂ (_as|k7 OO) - js-
keN
(b-ii) We show —d, € J,. Since (—0,,00) C J, we have that p,(—0, +¢) € Sy is a
moment sequence for all € > 0. Hence,

Lps(—as—i-a) (p) >0

26



The Theory of Moments Script for the Lecture Dr. Philipp J. di Dio

Wintersemester 2022/23 (last update: December 13, 2023) University of Konstanz
for all p € Ry, ..., x,] with p > 0 and € > 0. Since Ly (_o,4-)(p) is continuous in ¢ we
have

L0 (p) = lim Ly, (—o,4)(p) = 0

for all p € R[zy,...,x,] with p > 0. Therefore, L, (_,,) has a representing measure and
ps(—0s) € Su, 1€, =05 € Ty, O

From Definition [12.1.5] we know that each component p; ,(t) € R[t] depends only on
sg with < . Hence, in the time evolution L, ) (po) for po € Rlzy,. .., z,] we find
that there is a p(x) € Rlxy, ..., z,,t] such that

Lps(t) (po) = L (Pt)

for all t € R. This p; can be found by rearranging

Lyw(po) = Y calt) - sa

azla|<deg po

with ¢, € R[t]. Then p; can be defined uniquely from the ¢,’s. Note that in the following
definition and lemma, the polynomial p; (just like p4(t)) is defined for all ¢ € R.

Definition 12.1.11. Let po(z) = >, ca(0) - 2% € Ry, ..., 2,]. For any a € Ny with
la| < deg(po) denote by ¢, € R[t] the polynomial given by

L) = Y Calt) 50

azlal<deg po

Then we define the polynomial p;(z) € R[zq,...,x,,t] as

pi(x) == Z Co(t) -

a:|af<degpo
for all t € R.
Lemma 12.1.12. Let py € R[z1,...,x,]. Then the heat equation
Owu(z,t) = Au(z,t)
u(x,0) = po(z)

with initial data py has the unique solution u(x,t) = py(x) € Rlzy,. .., z,, t] for allt € R.
Additionally, we have

deg p; = deg po
for allt € R where deg is the degree in x.
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Proof. Let vg € C*(R™) C S(R™) and v be the unique solution of
Ow(x,t) = Av(z, t)
v(z,0) = vo(x).

Since p; € R[zy,...,x,] for all t € R and py € R[zy,...,x,] is arbitrary, it is sufficient
to prove Oypi(x) = Ap(z) at t = 0. We have from Definition [12.1.11

/npt(x) () dz = /npo(x) co(z,t) da. (20)

By differentiating with respect to t we get

O /npt(:v) ~vp(x) de . =0, /npo(x) ~v(x,t) do

t=0

_ / pol) - Bl 1) da

t=0

po(z) - Av(x,t) de

n

t=0

A
| @) -o(a.t) da
A

n

t=0

(Apo(z)) - vo(z) d.

n

Since vy € C°(R™) was arbitrary we have
Ope(x)|,_y = Apo(z)
which proves the statement. O

Remark 12.1.13. Lemma [12.1.12| can be also interpreted as follows. The unique solution
of the heat equation is gained by convolution with ©; and we have the well-known

relation
| a@)-@cn@dar= [ [ ga)-ee—y)- s dody
— [ (©x9)w)- 1) dy
for all g € R[xy,...,2,] and f a Schwartz function on R"™. For a measure py which has
finite moments we define y; = ©; * o in the same manner

f(@) dp(x / f(@) - Oz —y) duo(y) (30a)
Rn n Rn
which is by Fubini

= [ @ D) dpoly (30b)

and g solves the heat equation. Together, (30a) and (30b) can be used to provide an
alternative proof of Lemma [12.1.12 o
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Example 12.1.14. Let n =1 and s = (s4(0))7_, be a real sequence. We have
psot) =50(0), psa(t) =s1(0), and psa(t) = 52(0) + 250(0) - 5
see (27). For po(z) = co(0) + ¢1(0) - = + ¢2(0) - 22 we therefore have

Lps(t) (po) = CO(O )

= Ls (pt)>
pi(x) = [co(0) + 2¢2(0) - t] + ¢1(0) - & + ¢2(0) - 7,
dipe(w) = 2¢2(0),
and
ﬁgpt(m) = 2c5(0)
for all t € R. o

Theorem 12.1.15. Letn € N and s € S be an indeterminate moment sequence. Then
ps(t) is indeterminate for all t € [0,00).

Proof. First we prove that ps(t) is indeterminate for all ¢ € [0,¢) for some £ > 0:
Since s is indeterminate, and it has at least two distinct representing measures jo and
flo. Since py and fig are distinct there exists a measurable A C R™ such that

| xae) diala) # [ xale) di (31)
n Rn
where Y4 is the characteristic function of A. As the representing measure is Radon,

we can assume without loss of generality that A is compact. For the time-dependent
measures 4; and fi; we find from that

[ xalo) dute) = | (@0 xa) dpao) 32
[ xae) i) = [ (©140) dinta) (3)
Both and continuously depend on ¢ > 0 and since for ¢ = 0 we have there
exists an € > 0 such that #+ for all t € [0,¢), i.e., iy and fi; are two distinct

representing measures of p,(t) and hence p,(t) is indeterminate for all ¢ € [0, ).
Now we show that for ¢ = £/2 there are C*°-functions f./» and f./, such that

dﬂs/2(95) = fe/2(95) dz and dﬂa/2(55) = fa/Q(x) dz.
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It is sufficient to show this for py:
Since g = [gn 1 dpg < 00, we have pip(A) < oo for all Borel-measurable sets A €

B(R™). Let v := e~ . )\, where \ is the Lebesgue measure on R™. Then o and v are
finite measures. Hence, by the Lebesgue decomposition [Bog07, Thm. 3.2.3] there exists
a v-integrable function g and a measure p such that

o =9V +p,

p is singular with respect to v, i.e., there exists A € B(R") with v(A) = 0 but p(4) > 0.
We show that ©; * p for ¢ > 0 is no longer singular with respect to v: Let A € B(R")
with v(A) = 0. Then also the Lebesgue measure fulfills A(A) = 0. Since

1 f A
xa(x) = orT e, = O; *x xa =0 for all t > 0,
0 else

we have

O = [ @) d@p)e) = [ [ alo): Bl 1) doty) da
:/n(@t*XA)(y) dp(y)z/n()dp(y)z()-

Hence, for t = /4 we have that ©,,%p = h-v for a v-integrable function A. In summary
for t = £/2 we have

Hej2 = 65/2 * fho
=0O.0%(g-V)+O.2%p
=[0p2% (g e - A+ Oy x (h-v)
= [O2 % (g- €N A+ [Ocpax (h-e™)] - A
=[0.2%(g- e_x2) + O, 4 (- e_x2)] A
= fep2 A

with f./» a C°°-function. In the same way we get fi./» = fs/g - A for a C*°-function fg/g.
We already showed that j, # fi, for all t € [0,¢), i.e., for t = /2 we get f.)2 # f-/2.

Since the heat equation has the backwards uniqueness, see e.g. [Eval(, Ch. 2.3], we
have

O * fa/z # O * fe/?

for all t > 0, i.e., uy # fiy for all t > 0. Therefore, p,(s) is an indeterminate moment
sequence for all ¢ > 0. O

Corollary 12.1.16. Let n € N and s € S, be a determinate moment sequence. Then
ps(t) is a determinate moment sequence for all t € I, N (—o0,0].

Proof. Assume p4(t) is an indeterminate moment sequence for some ¢t < 0. Then, by
Theorem [12.1.15 we also know that s = p4(0) is indeterminate, a contradiction. ]
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In Theorem [12.1.15| we also proved the following result.

Theorem 12.1.17. Letn € N, s € S, and X be the Lebesgue measure on R™. Then
there ezists a family { fi}=0 C S(R™) with

ft1+t2 = @h * ft2 = @t2 * ftl

for all t1,ta > 0 such that ps(t) is represented by f; - A for allt > 0, i.e.,

Psalt) = / % - fi(z) do for all a € Ny and t > 0. (34)

Proof. In Theorem[12.1.15|we already established that { f; };~0 is a family of C'*°-functions
such that holds. It remains to show that

lz* - 87 fu() ]l < 00 (35)

for all o, 5 € INj and ¢ > 0 to have {fi}+~0 C S(R").

Let t > 0. Since fRn - fy(x) dz is finite by the definition of the Lebesgue integral we
have [o, |2 - fi(z)| dz < oo for all v € IN, i.e., limyg o0 x* - fy(x) = 0 for all v € ING.
Therefore, we can use partial integration to get

/ 20 fa) do = (-1 / (@) fila) d. (36)

It is therefore sufficient to show for g = 0.

Since g, (z) = - f;(x) is continuous and g, € L'(R™), we also have g, € L*(R"). By
(36]) we also have that 9°g,, € L2(R") for all 3. INZ. Hence, g, € H*(R") for all « € IN?
and by the Sobolev Imbedding Theorem we have for all o, B € ING. O]

12.2. The Heat Equation acting on Polynomials

The following are the explicit time-dependent polynomials for the 1-dimensional heat
equation in Lemma [12.1.12]

Definition 12.2.1. Let d € IN;. We define pog, pogr1 € Rz, t] by

d
Poq(x,t) Z @i 2] L p2d-2)
j=0
and
L (@2d+1 | |
paat1(z, 1) : JZ: 2d+1—2] j!. J . p2d+1-2j
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Example 12.2.2. We have

po(z,t) =1

pi(z,t) ==z

po(x,t) = 2t + 2°

ps(z,t) = 6to + 2°

pa(z,t) = 12t + 12t2* + 2*

ps(z,t) = 60t°x + 20t2® + 2°

pe(z,t) = 120t + 180t%2” + 30tz + 2°

O

Straightforward calculations show that p;, &k € INp, solve the initial value heat equation

0. 1) = OPpy(z,t
i (7, 1) ipk(x ) (37)

Hence, by linearity of the heat equation we have the following extension of Definition[12.2.1
and the observation , the explicit version of Lemma [12.1.12]

Theorem 12.2.3. Let d € Ny, n € N, and fo(z) = ZaelNg Cox® € Rlzy,...,2,]. Then

pr(z,t) = Z Ca Py (1, 8) Do, (T, t) € Rlxy, ... 20, 1] (38)
aclNy
with o = (o, ..., ap) € Ny solves the initial value heat equation

8tf($7t) = Af($’ t)
f(l’,O) = fO(I)

Proof. By linearity of the Laplace operator A it is sufficient to look at fo(z) = 2 for
a € INj. By we already have Oip,, (7;) = 0?p,, (z) and hence

Opso(2,1) = Oifpay (21,1) - - Par, (Tn, )]
= [0Pa; (21, 1)] * Pas (T2,1) - -+ Par, (Tn, )
ot Par (T1,8) - Pan o (Ta-1,1) - (O, (T, t)]
= [@%pal(xla t)] “Pay (552a t) “Pay (xn, t)
+ ot Pay (T1, 1) Pa (T, T) - [agpan(xm t)]
= Apy,(z,1). O

Example 12.2.4 (Motzkin polynomial [Mot67]). Let

frtoz(7,y) = 1= 32%y* + 2'y* + 2%9* € R[z, 9]
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be the Motzkin polynomial. Then by Definition [12.2.1| (resp. Example [12.2.2)) we have
the substitutions

2 = 2t 4+ 22, zt = 1262 4+ 12t2% + 2,
y? = 2t + 12, Yt 1267 4+ 12ty% + !

and get

Puotz (T, 9, 1) = 1 — 3(2t + o) (2t + y?) + (1262 + 12t2% + 24) (2t + o)
+ (2t 4 2?) (126 4 12t + y*)
=1 —126% + 4813 4+ 6t(—1 + 6t) (2® + y*) + (—3 + 24t) 2%y
+2t(z* + y*) + 2ty + 22y
for all t € R. o

Theorem 12.2.5. Let d € Ny and p be a kernel such that f]R" y* - p(y) dy is finite for
all « € N} with |o| < d, then

cxpc Rlxy, .o wn)<a = Rl oo 20 <a

Proof. Let p € R[zy,...,%,]<q. Then from

@*@@»=/IMx—w-mwdy
and expanding p(x — y) in the right side gives the assertion including the degree bound
deg(p* p) < d. O
Corollary 12.2.6. Let n € IN, d € Ny, and fy € Pos(n,d). Then

ps(-,t) € Pos(n,d)
for allt > 0. Especially, if fo # 0 then pg,(-,t) >0 on R™ for all t > 0.

Corollary 12.2.7. Let n € N and fy € Rlxy,...,x,]. Assume there exist t > 0 and a
point & € R™ such that py,(€,t) < 0. Then fy & Pos(n,d).

Example 12.2.8 (Motzkin polynomial, Example [12.2.4] continued). We have

11 11 N\ 71 4 2
Y O L B o o * 9
Putora (2, 9, 1) = 37 < 148"~ 148Y ) T3 <“7 1Y >

! 4, 2%_57 20 1063 (5 27 , 2
—_— —_— _:I/‘ _:L‘ —_— . l’ —
AT 2" Y T 502 1063”
3815 63 63 5 4

+— -yt Sty oy

2126 71 71 € 508(2,6)
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e., Puotz(+,1) is by Corollary [12.2.6] not just non-negative, but in fact a sum of
squares. This relation can easily be obtained e.g. by the use of Macaulay2 [GS| and
the SumsOfSquares package [CKP20]. In fact, additional calculations indicate that

pMotz( : 7t> S {POS<27 6> \ SOS(27 6) fort € [07 TMOtZkin)v and

SOS(2,6) for ¢ € [Thotzkin, 00),
with
31998 T 31999
1000000 = “Mewkr S 1000000°
The choice of the intervals [0, Tyvotzkin) @0d [Thotzkin, 00) is clear since SOS(2, 6) is closed
and py,(-,t) continuous in ¢, i.e., Pumotz( -, TMotzxin) € SOS(2,6). o

Theorem 12.2.9. Let p > 0 be a kernel such that [, y*-p(y) dy is finite for all o € Ng
with |a| < d, then
- % p: S08(n,d) — SOS(n, d).

Proof. Let p € SOS(n,d), i.e., there exists a symmetric Q € RV*N with N = (";d) such

that p(x) = (z*)L - Q- (2*), where (%), is the vector of all monomials 2z with |a| < d.
We then have

@) = [ ple—y)plo) dy
— [ (=@ (= ) o) dy

and by Richter’s Theorem we can replace p(y) dy by a finitely atomic representing
measure [, = Zle ¢ - 0y, with ¢; > 0 and get

(x —y))E- Q- ((x — y:)™)a € SOS(n, d). O

IIM?r

Theorem 12.2.10. Let p > 0 be a kernel such that [p,y™ - p(y) dy is finite for all
a € Ny, then
- % p: War(n,d) — War(n, d).

Proof. Let p € War(n, d), i.e., p(z) = 3.F_ (a; - #)?. Then

(p*p)(r) = /np(ﬂf —y) - ply) dy

= /R > (ai- (x—y)* ply) dy

=1

and by Richter’s Theorem we can replace p(y) dy by a finitely atomic representing
measure [ = 22:1 cj - 0y, With ¢; > 0 and get

l k

ZZCJ (2 —y;))* € War(n, d). O

7j=1 =1
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In Examples |4.3.3| we listed several non-negative polynomials which are not sums of
squares. We want to investigate, what happens to them under the heat equation.

Example 12.2.11 (Robinson polynomial [Rob69]). Let
Frobinson (2, y) = 1 — 2% —y* —a® + 3ay® —y* +2° — 'y — 2%y" +4°

be the Robinson polynomial, i.e., frobinson € P0s(2,6) \ SOS(2,6). Then by a direct
calculation using Macaulay2 with the SumsOfSquares package similar to the Motzkin
polynomial we find Prebinson(*, 1) € SOS(2,6) and by Theorem [12.2.9] we have

Pos(2,6) \ SOS(2,6) for t € |0, TRobinson), and
pRobinson( . ,t) c { ( ) \ ( ) [ Rob )

SOS(2,6) for ¢ € [Trobinson: 00),
with
20946 < To. - 20947 o
1000 000 Robinson 1000000
Example 12.2.12 (Choi-Lam polynomial [CL77]). Let
fChoi—Lam(xJ Y, Z) =1- 4.TyZ + m2y2 + .T2Z2 + y2Z2
be the Choi-Lam polynomial, i.e., fcnoi—Lam € Pos(3,4) \ SOS(3,4). We have
PChoi—Lam (T, Y, 2,t) = 1 —dayz + (2t + x2)(2t + y2) + (2t + x2)(2t + z2)
+ (2t + y*) (2t + 2%)
=1+ 128* — dayz + 4t(2° + y* + 2°) + 2%y* + 2°2° + y?2?
= fChoi—Lam(xa Y, Z) + 12t2 + 4t($2 + yQ + 22)
forallt € R and for t = % we have
31 2 \? 2 \? 2 \?
pChoifLam(‘ruwaa 1/9) = ﬁ + (xy - gz) + <$Z - §y> + (’yZ - gx) . o
We have
Pos(3,4) \ SOS(3,4) for t € [0, Tchoi—Lam), and
pChoi—Lam( . 7t) S
SOS(3, 4) fort € [TChoifLama OO),
with ] )
5 7-107° < Tehoictam < 5 6-107° o

Example 12.2.13

fsenm(2,9) = (¥ — 2®) (2 + 2)[z(x — 2) + 2(3* — 4))]
+200[(z® — 42)% + (v* — 4y)*] € Pos(2,6) \ SOS(2, 6)

—~

Schmiidgen polynomial [Sch79]). The polynomial

is the Schmiidgen polynomial and we find pgenm( -, 1) € SOS(2,6). In fact, Macaulay2
calculations with the SumsOfSquares package and Theorem [12.2.9[shows that psenm( -, t)
€ SOS(2,6) for all t > 2107 o
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Example 12.2.14 (Berg—Christensen—Jensen polynomial [BCJ79]). The Berg-Christensen—
Jensen polynomial

foca(z,y) =1 — 2%y + 2"y + 2%y € Pos(2,6) \ SOS(2,6)
is connected to the Motzkin polynomial fyotskin (Example [12.2.4]) by

fecs(2,9) = Frotain (T, y) + 2%y

and hence from Theorem [12.2.9] we see that
pBCJ< . ,t) € SOS(Q, 6)
for all ¢ > %. o

Example 12.2.15 (Harris polynomial [Har99, R, in Lem. 5.1 and 6.8]). Let
frar(z,y) = 162" — 362%y% + 2025y* 4 202*y°® — 362%¢° + 16¢'°
—362% + 572%° — 38x1y? + 57225 — 361°
+202° — 38z%y* — 38x2%y* + 204°
+ 202" 4 57x%y? + 20y*
— 362 — 36y°
+ 16

be the Harris polynomial, i.e., fiar = Rop € Pos(2,10)\SOS(2,10). With Example[12.2.2]
ps(z,t) = 1680t* 4 3360322 + 840t%x* + 56t2° + 2,
and
pro(x, t) = 30240¢° 4 75600t 2% 4 25200t3z* 4 2520t22° + 90t2® 4 '

we calculate pp,, and find pya, (-, 1) € SOS(2,10). In fact, Macaulay2 calculations and
Theorem [12.2.9 show that pp..(-,t) € SOS(2,10) for all ¢ > 8- 1074 o

Lemma 12.2.16. Let n,d € N and

f(z) = Z aq - % € Pos(n, 2d)

laj<2d

such that
faa(x) = Z Ao - % & SOS(n, 2d),

|a|=2d
then ps(-,t) € Pos(n,2d) \ SOS(n,2d) for allt > 0.
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Proof. Assume there is a ¢t > 0 such that

2
k

pr(a,t) =3 [ Y calt) 2| = D aalt) -2 € SOS(n, 2d).

i=1 \Jal<d lal<2d
Since by Definition [12.2.1{ we have a,(t) = a,(0) for all @ € INj with |«| = 2d the sum
of squares decomposition of p¢(-,t) gives

2

Faa() =3 [ D cialt) 2% | €80S(n,2d)

=1 |a|:d

.

which contradicts the assumption faq & SOS(n, 2d). O

Example 12.2.17. Let f(x,y,2) = 2% — 32?9?22 + 2%9* + 2%y* € Pos(3,6) \ SOS(3,6)
be the homogeneous Motzkin polynomial. Then p;(-,t) € Pos(3,6) \ SOS(3,6) for all
t> 0. o

Lemma 12.2.18. Let n € N and f € Pos(R™) with deg f = 2d for some d € N. Then

lim ps(o,t) =c>0.

t—o00 d

Proof. Let k € IN. Tt is easy to see that AFg is constant on R" for all g € R[w1, . .., ] <on
and even equal to zero for all g € Rz, ..., 2,]<op-1-

Since f € Pos(R™) with deg f = 2d we have that the homogeneous part foq of f
of degree 2d is non-zero and non-negative on R™. Then by Theorem we have
Otps(z,t) = App(z,t) = A fog(x) = ¢ > 0 which proves the statement. O

Open Problem 12.2.19. Let f € Pos(R?) \ SOS(R?). Is it true that there always is a
T =T(f) >0 such that ps(x,t) € SOS(R?) for allt > T?

Open Problem 12.2.20. Let f € Pos(R3) \ SOS(R?) with deg f < 4. Is it true that
there always is a T = T(f) > 0 such that ps(x,t) € SOS(R?) for allt > T'?

12.3. Burgers’ Equation

Theorem 12.3.1. Let ug € S(R,R). Then there exist maximal Ty, Ty > 0 such that
Burgers’ equation

Ou = —u - 0yu

u(+,0) =g (39)

has a unique classical solution u € C*((=T11,T3),S(R,R)). (=T1,T3) is the mazximal
interval such that u € C((=11,Ts), C;°(R, R)).
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Theorem 12.3.2. Letug € S(R,R). Then for allp € N and k € Ny the time-dependent
moments

Skp(t) i= /1ka ~u(x, t)P dz

of the solution u of Burgers’ equation (@) are

k i—1

skp(t) = ZO Sk+'+<0) . HO (p1++j zp fj;j ) € R[t].

Proof. We proceed via induction over k € INy.
k = 0: We have

u(z, t)? de = —p/ u(z,t)? - Opu(z,t) do
R

at807p(t) = at/

R

with partial integration since u( -,t) is a Schwartz function

:p/ Oplu(z, t)P] - u(x,t) do :p2/ u(x, t)? - Opu(z,t) do
R R
= —p - s0p(t)
which gives 0;s¢,(t) = 0 and therefore sq,(t) = s0,(0).
k —1 — k: We have

Orskp(t) = 8t/ ¥ u(z, t)P do

R

= —p/]ka cu(z, )P - Opu(z,t) do
:p/Raz(x cu(z, BP) - u(z, t) de

=p- k‘/ * (P da —|—p2/ o u(x, )P - Opu(w, t) do
R R

=p- k- sio1pr1(t) =% Desip(t)
_ Pk

T Sk—1p+1(1)

and solving this induction gives

p-k [
Skp(t) = skp(0) + Sk—1p+1(11) A7
0

1+p?
p-k [ (p+1(k-1) (™
= skp(0) + e /0 {Sk—l,pﬂ(o) + EESCESEN) Sk—2pr2(T2) drz| dm
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p+]

—J)

_2 :Sk zp-i—z

which proves the statement.

=0

1+ ( p+j

]

Example 12.3.3. For p = 1 we have the following three explicit time-dependent

moments from Theorem [12.3.2}

/]Ru(x,t) dz = so1(t) =
/Rx~u(a:,t) dr = s14(t) =

/}sz cu(x,t) de = s94(%)

For the function

= 8271(0) + 81,2(0) A

50,1(0)7

8171(()) + 5072(0) . t,

28073(())
5)

12

1+z forxze|-1,0],

up(x) == 1—xz forxze|0,1],
0 else
we have s91(0) = 1, s11(0) = 0, s92(0) = %, $21(0) = %, s12(0) = 0, sg3 % and
therefore
1 2 0o
/(:c 0P (e t) de = Lyl — ) = g~ =t 55 oo (a0)
R

Since vy € S(R) using a mollifier we get uf := 5. xug € C°(R) € S(R) for any £ > 0.
We can chose by continuity of the s,(0) on € an € > 0 small such that the coefficient
of t? in remains negative. Hence, non-negativity in the assumed classical solution
is not preserved, i.e., we have a finite breakdown. o

Let Kk € N and k& > 2. For
o = u - Ou (41)
multiply ([1) with k- uF~! to get Oy(u*) = u* - 9, (u*
v=u" Ifuy >0 we can allow k € [1,00) in (41).

). This is Burgers’ equation with

13. Transformations of Moment Functionals

The results presented here are published in [dD23b].
Besides the one-point evaluation L, (f) = f(x¢) the following is probably the simplest
moment functional.

Example 13.0.1. Let A be the Lebesgue measure on [0, 1] and let V = R[t]. Then the
functional

d+1
d+1 holds for all d € IN,. o

1
L : R[t] = R with Ly (t9) = / th dA(t) = for all d € IN, (42)
0

is the unique linear functional such that L(t?) =
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We have seen in Hausdorft’s Theorem that the [0, 1}-moment problem is one of
the simplest to decide. In this chapter we follow the monographs [Fed69], [LLO1], and
especially [Bog07] for the measure theory and Lebesgue integral. Among other things
we want to show that every moment functional has the following form.

Theorem 13.0.2. Let S be a Souslin set (e.g. a Borel set S C R"), V be a vector space
of real measurable functionsv : S — R, and L : V — R be a linear functional. Then the
following are equivalent:

(i) L:V — R is a S-moment functional.

(i) There exists a measurable function f :[0,1] — S such that

Lv) = / o(£(1)) dA(t) (43)

for allv € V where X is the Lebesgue measure on [0,1], i.e., Ao f~1 is a representing
measure of L.

13.1. Souslin Sets, Isomorphisms, and Lebesgue—Rohlin Spaces
We have the following transformation formula.

Lemma 13.1.1. Let f : (V,B) — (R, B(R)) and g : (X, A) — (Y, B) be measurable
functions, u be a measure on (X, A) such that f o g is u-integrable. Then po g~ ' is a
measure on (Y, B) and f is p o g~ -integrable with

/ (f 0 9)() du(x) = / F() d(wo g™ w). (44)
X %
Proof. 1t is sufficient to show for f > 0:
/X (f 0 9)(x) dpu(z) = / " ul(f 0 9) 7 (1, 00))) dt
- / Tl (N (oo))) db
- / Tlwo g (M (1 oo)) dt
- /y ) o g™ (y). 0
Proposition 13.1.2 (see e.g. [Bog07, Prop. 9.1.11]). Let u be an atomless probability

measure on a measurable space (X, A). Then there exists an A-measurable function
f:X —[0,1] such that po f~' = X is the Lebesgue measure on [0, 1].

Definition 13.1.3 ([Bog07, Def. 6.6.1]). A set in a Hausdorff space is called a Souslin
set if it is the image of a complete separable metric space under a continuous mapping.
A Souslin space is a Hausdorff space that is a Souslin set.
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The empty set is a Souslin set. Souslin sets are fully characterized.

Proposition 13.1.4 (see e.g. [Bog07, Prop. 6.6.3]). Every non-empty Souslin set is the
image of [0,1] \ Q under some continuous function and also the image of (0,1) under
some Bore[| mapping.

More concrete examples which are important to us are the following.

Example 13.1.5. The unit interval [0, 1] C R is of course a complete separable metric
space (with the usual distance metric d(z,y) := |z —y|). The question which sets are the
continuous images of [0, 1] is partially answered by space filling curves, see e.g. [Sag94,
Ch. 5]. So the Peano curves as continuous and surjective functions

f00,1] = [ag, by] X -+« X [an, by

with n € N and —oc0 < a; < b; < oo for all i = 1,...,n show that all hyper-rectangles
are Souslin spaces/sets. Especially [0, 1] is a Souslin set/space.
A full answer gives the following theorem.

Hahn—Mazurkiewicz’ Theorem 13.1.6 (see [Hahl4l Maz20] or e.g. [Sag94,
Thm. 6.8]). A set K in a non-empty Hausdorff space is the continuous image of
0, 1] if and only if it is compact, connected, and locally connected.

So sets K C R™ are continuous images of [0,1] if and only if they are compact and
path-connected. Hahn—Mazurkiewicz also implies that PR™ is a Souslin space. o

More Souslin sets can be constructed or identified by the following lemma.
Lemma 13.1.7 (see e.g. [Bog07, Lem. 6.6.5, Thm. 6.6.6 and 6.7.3]).

(i) The image of a Souslin set under a continuous function to a Hausdorff space is a
Souslin set.

(i1) Every open or closed set of a Souslin space is Souslin.

(iii) If A, are Souslin sets in X, for all n € N then [], . An is a Souslin set in
HnE]N Xn

(iv) If A, € X are Souslin sets in a Hausdorff space X, then (), cn An and |J,cn An
are Souslin sets.

(v) Every Borel subset of a Souslin space is a Souslin space.

(vi) Let A C X and B C Y be Souslin sets of Souslin spaces and f : X — Y be a Borel
function. Then f(A) and f~(B) are Souslin sets.

Remark 13.1.8. The reverse of Lemma|13.1.7|(v) is in general not true. Not every Souslin
set is Borel. In fact, every non-empty complete metric space without isolated points
contains a non-Borel Souslin set, see e.g. [Bog07, Cor. 6.7.11]. o

29The inverse of open, closed, and Borel sets are Borel sets.
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Example 13.1.9. R™ and every compact semi-algebraic set in R™ (resp. PR™) are
Souslin sets. o

Definition 13.1.10. Let (X,.A) and (), B) be two measurable spaces. A measurable
function ¢ : (X, A) — (), B) is called an isomorphism and the two measurable spaces
isomorphic if ¢ is bijective, ((A) = B, and .71(B) = A.

The reason why we work with Souslin spaces is revealed in the following theorem.

Theorem 13.1.11 (see e.g. [Bog07, Thm. 6.7.4]). Let X' be a Souslin space. Then there
exist a Souslin set S C [0,1] and an isomorphism ¢ : (S,B(S5)) — (X, B(X)).

The existence of an isomorphism can be weakened. For Borel measurable function
f: X — Y between two Souslin spaces X and ) with f(X) = ) one always finds nice
(i.e., Borel measurable) one-sided inverse functions.

Jankoff’s Theorem 13.1.12 (see [Jan4l] or e.g. [Bog07, Thm. 6.9.1 and 9.1.3]). Let
X and Y be two Souslin spaces and let f : X — Y be a surjective Borel mapping. Then
there exists a Borel measurable function g : Y — X such that f(g(y)) =y for ally € Y.

_In other words, restricting f so some X C X" makes f=7 |x, not only bijective but
f and f~! are measurable. We have

yE&xLhy with fog=idy,
i.e., g is injective, f is surjective, and with Xy = im g := ¢())) we have f~! = g.

Definition 13.1.13 (see e.g. [Bog07, Def. 9.2.1]). Let (X, A, ) and (Y, B,v) be two
measure spaces with non-negative measures.

i) A point isomorphism T : X — ) is a bijective mapping such that T'(A) = B and
poT 1 =wv.

ii) The spaces (X, A, u) and (Y, B,v) are called isomorphic mod0 if there exist sets
NeA,, M e B, with 4(N) = v(M) = 0 and a point isomorphism 7" : X \ N —
Y \ M that are equipped with the restriction of the measures 1 and v and the
o-algebras A, and B,.

A point isomorphism 7" between (X, A, 1) and (), B, v) is of course measurable since
v(B) = (noT 1) (B) = u(T~Y(B)) implies T~!(B) € A for all B € B.

Like Theorem [13.1.11]also the next result shows the importance of working on Souslin
sets.

Theorem 13.1.14 (see e.g. [Bog07, Thm. 9.2.2]). Let (X, A) be a Souslin space with
Borel probability measure . Then (X, A, ) is isomorphic mod0 to the space ([0, 1],B([0,1]),v)
for some v Borel probability measure. If u is an atomless measure, then one can take

for v the Lebesgue measure \.
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Corollary 13.1.15 (see e.g. [Bog07, Rem. 9.7.4]). Let u be a probability measure on
a Souslin space X. Then there exists a measurable function f : [0,1] — X such that
= Xo f~1 where \ is the Lebesque measure on [0,1].

For both results note the difference to Proposition [13.1.2] In Proposition [13.1.2] we
find for any measurable space X and measure ; a map

f:X —=[0,1] such that w=Mo 1
But for Souslin spaces X in Corollary [13.1.15) we find a map
f:00,1] - X such that A=po fL.

Theorem [13.1.14] restricts f : [0,1] = X to isomorphisms and hence not all measures can
be transformed into A\. Atoms in the measure p prevent it from being isomorphic to A. In
fact, as explained in [Bog07, Rem. 9.7.4], Corollary [13.1.15 follows from Theorem [13.1.14]
by introducing atoms into f : [0,1] — X by introducing constant functions into f.

But Theorem provides that if ;4 has atoms, it can still be isomorphic mod0
transformed into a measure v on [0,1]. Without atoms we could chose v = A. So is it
possible to transform the non-atomic part of i to A and then add the atoms from p to
A? Yes, we can. This is done on the following spaces.

Definition 13.1.16 (see e.g. [Bog07, Def. 9.4.6]). A measure space (X, A, p) is called
a Lebesgue—Rohlin space if it is isomorphic mod0 to some measure space (), B, v) with
a countable basis with respect to which ) is complete.

Example 13.1.17 (see e.g. [Bog07, Exm. 9.4.2]). (M,B(M), i), where M is a Borel set
of a complete separable metric space X and p is a Borel measure on M, is a Lebesgue—
Rohlin space. Especially X = R"” or PR" are complete metric spaces and therefore any
Borel measure on a Borel subset M € B(R") gives a Lebesgue—Rohlin space. o

We can now transform any measure by an isomorphism mod0 to the Lebesgue measure
A plus atoms.

Theorem 13.1.18 (see e.g. [Bog07, Thm. 9.4.7]). Let (X, A, u) be a Lebesqgue—Rohlin
space with a probability measure . Then it is isomorphic mod0 to the interval [0, 1] with
the measure v = cA\+ 3" ¢ - 01, where c =1 =37 ¢;, p(a;) = ¢; and {a;} € X is
the family of all atoms of .

So we can transform any measure to the Lebesgue measure A on [0, 1] or to A on [0, 1]
plus atoms. But these transformations are performed mainly by measurable functions
because the set X where the original measure lives is too large. If we restrict the space
where the measure lives, we get better transformations, especially continuous ones.

Kolesnikov’s Theorem 13.1.19 (see [Kol99] or e.g. [Bog07, Thm. 9.7.1]). Let K be
a compact metric space that is the image of [0,1] under a continuous mapping f and
let p be a Borel probability measure on K such that suppu = K. Then there exists
a continuous and surjective mapping f : [0,1] — K such that u = Xo f=1, X is the
Lebesgue measure on [0, 1].
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We will apply Kolesnikov’s Theorem especially in connection with the Hahn—
Mazurkiewicz’ Theorem [13.1.6, The advantage is here that f on [0,1] is continuous
and can therefore be approximated by polynomials up to any precision € > 0 in the
sup-norm.

13.2. Transformations of Moment Functionals

Proof of Theorem[13.0.2. (i)—(ii): Let u be a representing measure of L. By Corollary
13.1.15| there exists a measurable function f : [0,1] — S such that 4 = Ao f~! and hence

L) = / o(z) du(z) = / o(@) d(Ao f)(x) ommaETT / o(£(£)) ()

for all v € V.
(ii)—(i): Ao f~!is a representing measure of L by Lemma [13.1.1 O

Definition 13.2.1. Let X and Y be two Souslin spaces, 4 and V two vector spaces
of real measurable functions on X resp. )V, and K : Y/ — R and L : V — R be two
linear functionals. We say L (continuously) transforms into K, symbolized by L ~~ K
resp. L ~» I, if there exists a Borel (resp. continuous) function f : X — ) such that
VofCUand L(v)=K(vo f) forallv € V.

We say L strongly (and continuously) transforms into K, symbolized by L ~ K resp.

L % K, if there exists a surjective Borel (resp. surjective and continuous) function
f:X — Ysuch that Vo f =U and L(v) = K(vo f) for all v € V.

Corollary 13.2.2. L:V — R is a moment functional iff L ~ [K : £([0,1],\) — R].

For the transformation ~~ between two linear functionals in Definition [13.2.1| we get
the following technical result.

Lemma 13.2.3. Let X, Y, and Z be Souslin spaces; U, V, and VW be vector spaces of
real measurable functions on X, Y, and Z respectively; and M : W — R, L :V — R,
and K : U — R be linear functionals. The following hold:

(i) M ~ L and L ~ K imply M ~~ K.
(i1) M ~5 L and L ~5 K imply M ~5 K.
(i) M~ L and L ~~ K imply M ~5 K.
(iv) M <5 L and L <5 K imply M <5 K.

Proof. (i): Since M ~» L there exists a Borel function f : ) — Z such that Wo f CV
and M (w) = L(wo f) for all w € W. And since L ~» K there exists a Borel function ¢ :
X — Y such that Vog C U and L(v) = K(vog) for allv € V. Hence, h = fog: X — Z
implies Woh =Wo fogCVog CU and M(w) = L(wo f) = K(wo fog) = K(woh)
for all w € W, ie., M ~~ K.

(ii)-(iv) follow in the same way as (i). O
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Lemma [13.2.3| can be seen as shortening the sequence:
M~ L~ K = M ~~ K.

Lemma 13.2.4. Let X and Y be Souslin sets, U and V wvector spaces of real functions
on X resp. Y, and L -V — R and K : U — R be linear functionals. Then L ~> K
implies K ~ L.

Proof. Since L ~» K there exists a surjective Borel function f : X — Y such that
L(v) = K(vo f)and Vo f =U. Since f is surjective by Jankoff’s Theorem [13.1.12
there exists a Borel function ¢ : ) — X such that f(g(y)) = y for all y € Y. Let
u€eU=Vof then vin u=wvo fis unique since for v; and v, with that property we
have
vp=viofog=uog=uvy0fog=us.
Hence, U o g =V and for all u € U we have
K(u)=K(vo f)=L(v)=L(vo fog)= L(uog). O

Theorem 13.2.5. Let X and Y be Souslin sets, U and V vector spaces of real functions
on X resp. Y, and L:V — R and K:U — R be linear functionals. If L ~ K, then

(i) K is a moment functional
implies

(ii) L is a moment functional.
If L~ K, then (i) < (ii).

Proof. Since L ~~ K there exists a Borel function f : X — ) such that Vo f C U and
L(v)=K(vo f) for all v € V.
(i)—(ii): Let K be a moment functional with representing measure v on X, then

Lemma [I3.1.1] _
LW =Ko f)= [ (vo i) dvla) " [ ofy) awo 1))
X Yy
i.e., vo f~1is a representing measure of L and hence L is a moment functional.

(ii)—(i): When L ~% K, then Lemma [13.2.4 implies K ~ L. O
The importance of the transformation and hence Theorem [13.2.5 can be seen in

Lg Le ~ Ls
$ §
L4 ~ L3 ~ L2 ~ L1 ~ K. (45)
§
Ly
If K is a moment functional, then all L1, ..., Ly are moment funtionals. Assume in
all transformations ~» are strong transformations ~». Then: If one L; or K is a moment
functional, then all K, L., ..., Ly are moment functionals.
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Proposition 13.2.6. LetV be a vector space of real measurable functions on a measurable
space (X, A) such that there exists an element v € V with1 <v on X andlet L:V — R
be a moment functional which has an atomless representing measure. Then there exists
a measurable function f: X — [0,1] and an extension L : V + R[f] = R of L such that

L(f?) = 24 for all d € Ny, ice., L : R[] — R with L(t?) := L(f?) for all d € Ny is

represented by L(1) - X where X is the Lebesgue measure X on [0, 1].

Proof. Let p be a representing measure of L. By Proposition [13.1.2| there exists a
measurable f : R™ — [0, 1] such that go f~' = X on [0, 1]. Since f is measurable, |f| <1
on R™, and L(1) < oo, all f¢, d € Ny, are p-integrable:

< [ 1@ duto) < [ 1ante) = L)

Define L : R[f] = R by L(f%) := [, f*(z) dpu(x). Then

[ (e dua)

L(1)

L() = | ') an(e) e / 1 d(po f)(t) = / v =

is represented by L(1) - A on [0, 1]. O

Theorem 13.2.7. Let n € N be a natural number, K C R"™ be a compact and path-
connected set, and let V be a vector space of real measurable functions on (K,B(K)).
Then any surjective and continuous function f : [0,1] — K induces for any linear
functional L -V — R a strong and continuous transformation

L:VoR Y [L.VofoR,

i.e., for any linear functional L :V — R the following are equivalent:

(i) L:V — R is a K-moment functional.

(ii) L:Vo f — R defined by L(vo f) := L(v) is a [0, 1]-moment functional.

If i is a representing measure of L, then fio f~1 is a representing measure of L.

There exists a measurable function g - K — [0,1] such that f(g(z)) = x for allx € K
and if i is a representing measure of L, then po g~' is a representing measure of L.

Proof. Since K C R" is compact and path-connected, by the Hahn—Mazurkiewicz’
Theorem [13.1.6| there exists a continuous and surjective function f : [0,1] — K.

By Example [13.1.5| or Lemma [13.1.7] [0,1] and K are Souslin spaces and f is Borel
measurable (since it is continuous). By Jankoff’s Theorem|13.1.12[there exists a measurable

function ¢g : K — [0, 1] such that
flg(z)) == forallz e K. (46)

implies that L is well-defined by L(v o f) = L(v). To show this, for o € V let
v1, U2 € V be such that vy o f =0 = vy0 f. But then g resp. implies v; = v10fog =
vog=uwg0 fog=uy,ie., for any v € V there is a unique v € ¥V with v = v o f.
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(i)—(ii): Let L :V — R be a K-moment functional and u be a representing measure
of L, i.e., suppu C K and

L(v) = /Kv(:v) dp(z) forallv e V.
Then
Lwo f) = L(v) = /K o(e) du(x) = /K (vo f)(g(a)) du(z)

Lemma [ETT] /O (vo f)(y) d(rog™)(y),

i.e., o g !is a representing measure of L and hence Lisa [0, 1]-moment functional.
(ii)—(i): Let it be a representing measure of L : VV — R. Then

L) = Ewo £) = [ (wo 1)) i) " [ o) do ) (o)

i.e., o f~1 is a representing measure of L with suppio f~* C K and L is therefore a
K-moment sequence. 0

Corollary 13.2.8. Letn € N and K C R" be the union of k € NU{oco} compact, path-
connected and pairwise disjoint sets K; C R": K = U§:1 K;. Let 'V be a vector space
of real valued measurable functions on (K,B(K)). There exists a continuous surjective

function
k

fURi-22i-1-K
=1

such that for any linear functional L : V — R the following are equivalent:
(i) L:V — R is a K-moment functional.

(ii)) L:V =R onV:={voflveV} and defined by L(vo f) := L(v) is a Ul [2i —
2,2i — 1]-moment functional.

An advantage in Theorem is that f = (fi,...,fa) : [0,1] - K C R" is
continuous. Hence, all coordinate functions f; : [0,1] — R are continuous. By the
Stone—Weierstrass Theorem we can approximate each f; in the sup-norm on [0, 1] by
polynomials to any precision. f can therefore be approximated to any precision by
a polynomial map. A representing measure ji of L provides the representing measure
fio f~' of L. An approximation f. € Rz, ..., z,]" of f, i.e., sup,cioq (1) = fe(t)]| < €
with any (fixed) norm || - || on R™ and £ > 0, provides an approximate representing
measure jio f! of L.

Let K C R™ be a compact and path-connected set, V = R|xy,...,z,],and L : V — R
be a linear functional. Then the induced functional L : ¥ — R on [0, 1] is defined by

L(po f) := L(p). It depends on po f, ie, f* = fi" - fO a=(a,...,a,) € Nj. So
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as in Theorem the algebraic structure of Rz, ..., z,] remains but the domain K
is pulled back to [0, 1] by the continuous f.

That the algebraic structure remains also reveals one big difference between L and
L. BE.g. V = Rlzy,...,x,| separates points and is therefore dense in C'(K,R). But
f:1]0,1] — K is a space filling curve and therefore never injective (Netto’s Theorem).
Hence, there are ty,t, € [0,1] with t; # t, and f(t1) = f(t2). Theset V := {pof|p € V}
therefore does not separate t; from ¢, and is by the Stone—Weierstrass Theorem not dense

in C([0,1],R). So the L in Theorem [13.2.7 and Corollary [13.2.8| can at this point not
extended to the Hausdorff Moment Problem (Hausdorff’s Theorem [3.4.2)).

Theorem 13.2.9. Let n € IN be a natural number and K C R"™ be a compact and
path-connected set. Then there exists a measurable function

g: K —[0,1]
such that for all linear functionals L : V — R with 1 € V C C(K,R) the following are
equivalent:

(i) L:V — R is a K-moment functional.

(i) L:V — R contmugusl extends to L : V 4+ Rlg] — R such that L : R[t] = R
defined by L(t%) := L(g%) for all d € Ny is a [0, 1]-moment functional, i.e.,

L:V—R
$ida (47)
L:Rt] R % L:V+R[g—R.

If u is the representing measure of L, then po g~* represents L.

Additionally, there exists a continuous and surjective function f:[0,1] — K independent
on L resp. L such that flg(z)) = for all x € K and if i is the representing measure
of L, then jio f~1 is the representing measure of L.

Proof. Since K is a compact and path-connected set, by the Hahn—Mazurkiewicz’ Theorem
there exists a continuous and surjective function f : [0,1] = K. By Lemma
[0,1] and K are Souslin sets and hence by Jankoff’s Theorem there exists a
measurable function g : K — [0, 1] such that

flg(z)) =2 forall ze€ K. (48)

(i)—(ii): Let L :V — R be a K-moment functional and p be a representing measure
of L with suppu € K. g is measurable with |g| < 1 and hence we have that all g¢,
d € Ny, are p-integrable by

/K g(x)* dpu(z)

30Tf p; € R[t] with p; = p € C([0,1],R) and po g € V then L(p; o g) — L(po g).

< /K l9(@)|* du() < /K Ldu() = p(K) = L) (49)
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and hence L extents to R[g]. Let p € R[t], then

L(p) = L(pog) = /K (00 9)(z) dp(z) el / p(t) (o g ™))

and g o g7' is a representing measure of L, i.e., L is a [0, 1]-moment functional.

(i)—(i): Let L : R[t] — R be a [0,1]-moment functional and i be its unique
representing measure. Since by the Stone-Weierstrass Theorem R[t] is dense in C([0, 1], R)
the moment functional L extends uniquely to C ([0,1], R). For simplicity we denote this
extension also L : C([0,1],R) — R. Since f : [0,1] — K is continuous we have
vo feC([0,1],R) for all v € V. By we have v =v o fog for all v €V and hence

L(v) = L(vo fog). (50)

But since v o f : [0,1] — R is continuous and L : R[t] — R uniquely extends to
C([0,1],R) we have i
L(vo fog)=L(vo f). (51)

In summary we get

L) B Lwo fog) B Lwo f) = / (vo f)(t) di(t)
tom 5L /K o(@) d(jio f (@) (52)

for allv € V, i.e., jio f~! is a representing measure of L and L is therefore a K-moment
functional. n

Theorem 13.2.10. Let n € IN be a natural number, K C R" be a compact and path-
connected set, and let g : K — [0, 1] be from Theorem . Then for any € > 0 and
K-moment functional L : Rxq, ...z, = R there exists a polynomial g. € Rz, ..., x,]
such that

L(lg: —gl) <e  and  |L(¢") ~ L(¢d)| < d - L(lg—g:]) < d-¢
hold for all d € Ny. g. can be chosen to be a square: g. = p? for some p. € Rlzy, ..., z,].

Proof. L is a K-moment functional and therefore has a unique representing measure u
with supp p C K. g > 0 and hence there exists a measurable function p : K — [0, 1] such
that g = p?. Since K is compact and u(K) = L(1) < oo the polynomials Rz, ..., z,]
are dense in L'(K, u). By

J o

we have p € L'(K, i) and therefore for any & > 0 there exists a p. € R[z1,. .., z,] such
that p. <1 on K and

1 = pellir = / ip(2) — po(2)] dulz) <

0| < [ 1pt)] dute) < [ 1ante) = £01) < o

l\DIH
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Set g. := p?. Then

L(g - g.) /rg g:] du( /\p (2)] du(a)
/|p pel - Ip 4+ p.l du(e <2/rp o) du(z) <. (53)

=1, i.e., L(¢") = L(1) = L(¢°%), and for d = 1 we have
|L(g) — L(g:)| < L(|g ge]) <e So let d > 2. Then

|1L(g") = L(g9)] < L(lg* — g2]) = /K l9(2)" = g-(2)| dp(=)

~ [ lote) - g igw%gaw—l-i @) (50
<d/|g o) du(z) < d-e. O

Corollary 13.2.11. Let k, n € IN be natural numbers and K C R"™ be the union of
finitely many compact, path-connected, and pairwise disjoint sets K;: K = Ule K;.
Then there exists a measurable function

k . .
20—2 21 —1
g:K—>[k::U[2k_1,2k_1] c [0,1]
=1

such that for all linear functionals L : V — R with 1 € V C C(K,R) the following are
equivalent:

(i) L:Rlxy,...,z,] = R is a K-moment functional.

(i) L =V — R continuously extends to L:V+R[g] = R such that L : R[t] = R
defined by L(t%) := L(g%) for all d € Ny is a [0, 1]-moment functional.

Corollary 13.2.12. Let n,k € IN be natural numbers, K C R"™ the union of finitely
many compact, path-connected, and pairwise disjoint sets K;, K = Ule K;, and let
g: K = I be from Corollary[15.2.11 Then for any € > 0 and K-moment functional
L:Rlxy,...,z,] = R there exists a polynomial g. € R[zy, ..., x,] such that

L(lge—gl) < and  [L(g®) = L(g9)| < d- L(lg — gc]) < d-¢
hold for all d € Ny. g. can be chosen to be a square: g. = p? for some p. € Rlxy, ..., z,].

Theorem 13.2.13. Let n € IN be a natural number, B € B(R"™) be a Borel set, and V
be a vector space of real measurable functions on B with 1 € V. Then the following are
equivalent.

(i) L:V — R is a B-moment functional.
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(i) There exist Borel sets M € B(B) and N € B([0,1]) and a bijective and measurable
function (isomorphism) f :[0,1]\ N — B\ M such that

1
L(v) = / v(f(1) dv(t)  with  v=c-A+ Y by (55)
0 €N
forallv eV, wherec, c; >0 and c+ ),y = L(1), i.e., vo f~1is a representing
measure of L.

Proof. (ii)—(i): Clear since v o f~! is a representing measure of L.
(i)—(ii): Let u be a representing measure of L. Then (B, B(B), u1) is by Example[13.1.17]
a Lebesgue-Rohlin space and therefore by Theorem|[13.1.18]isomorph mod0 to ([0, 1], B([0, 1]), v)
with v as in (55)), i.e., there exist Borel sets M € B(B) and N € B([0, 1]) and a bijective
and measurable function f : [0, 1]\ N — B\ M such that v = po f and u(M) = v(N) = 0.
Then by Lemma for all v € V we have

LW = [ o) du) = [ oo s duto)

B\M
= [ ) dee N = [ o) dvle =
[0,1\N 0

Theorem 13.2.14. Let n € IN, K C R" be a compact and path-connected set, V be a
vector space of real function on K, and L : V — R be a linear functional. Then the
following are equivalent:

(i) L : V — R is a K-moment functional with representing measure pn such that
supppu = K.

(i) There exists a continuous and surjective function f :[0,1] — K such that

1
LW = [ o) )
0
for all v €V where X is the Lebesgue measure on [0, 1], i.e.,
L 5 Ly £40,1,\) — R

Proof. (i)—(ii): Let L : ¥V — R be a K-moment functional and let p be its unique
representing measure with supp 4 = K. Since K is a compact and path-connected set,
by the Hahn-Mazurkiewicz’ Theorem [13.1.6] there exists a continuous and surjective
function f : [0,1] — K. By Kolesnikov’s Theorem [13.1.19| there exists a continuous and
surjective function f : [0,1] — K such that u = Ao f~!. For all v € V we get

Mlejummwzzj@ﬁmofUQVW@EEApUWMM@- (56)

(ii))—(@): By i = Mo f~lis a representing measure of L, i.e., L is a K-moment
functional. To show that supp u = K holds, let U C K be open. Since f is continuous,
f~YU) € [0,1] is open and therefore u(U) = A\(f~1(U)) > 0. O
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So far we transformed moment functionals to [0, 1]-moment functionals. We have
seen that e.g. R™moment functionals can not be continuously transformed into [0, 1]-
moment functionals. But we can transform R™moment functionals continuously into
[0, 00)-moment functionals. We need the following.

Lemma 13.2.15. Let n € N and € > 0. Then there exists a continuous and surjective
function f. :]0,00) — R"™ with

t—e<|f(O)<t+e
for allt > 0 and there exists a measurable function g. : R* — [0, 00) such that
felge(@)) =2 and  |z]| —e < g(2) < |lz]| +¢
for all z € R™.

Proof. Set
Ay ={zeR" | (n=1)-e<|z|]| <n-&}

for all n € IN. Then all A,’s are compact and path-connected and by the Hahn—
Mazurkiewicz” Theorem there exist continuous and surjective functions f.,, :
(n—1)-e,n-¢] = A, for all n € N such that f.,(n-¢) = fopp1(n-¢), ie., ||fon(n-¢)| =
| feng1(n-€)|| =n-eforall n € N. Since R" = [, An define f; : [0,00) — R™ by
felp—1,n) = fen- Then for t € [(n — 1) -e,n - €] we have

t—e<(n-1)-e<[fO=[fon@®ll <n-e<t+e (57)

Since f : [0,00) — R™ is surjective and [0, co) and R” are Souslin sets by Lemma/|13.1.7
then by Jankoff’s Theorem [13.1.12] there exists a g. : R" — [0,00) with f.(g-(z)) = =
for all z € R™. implies

ge(x) — e < |Jzf| = [Ife(ge (@) < ge(2) + €
and therefore ||z]| — e < g-(z) < ||z| + ¢ for all z € R™. O

Theorem 13.2.16. Letn € IN, f: [0,00) — R" be a continuous and surjective function,
and V be a vector space of measurable functions on R"™. Then for all linear functionals
L:YV — R the following are equivalent:

(i) L:V — R is a moment functional.
(ii) L:Vo f— R defined by L(vo f) := L(v) is a [0, 00)-moment functional.

Le., L <5 L. If i is a representing measure of L, then jio f~X. There exists a function
g: R" —[0,00) such that f(g(x)) = x for all x € R™ and if p is a representing measure
of L, then jo g~' is a representing measure of L.
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Proof. Since R™ and [0, 00) are Souslin sets and f is surjective, by Jankoff’s Theorem
there exists a function g : R™ — [0, 00) such that f(g(x)) = « for all x € R™. It follows
that L is well defined by L(v o f) = L(v).

(i)—(ii): Let u be a representing measure of L, then

Lwof) = L) = [ o) due) = [ v((gla)) duto)
e [0 f)(0) deo g o)

i.e., o g!is arepresenting measure of L.

(ii)—(i): Let fi be a representing measure of L, then
L) = Lwo £) = [ 0o p) a0 ™ [ o) diio ) (o)

i.e., fio f~!is a representing measure of L. m

THE END
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A. Appendix

A.1. Hahn-Banach®ll dominated Extension Theorem

Hahn—Banach dominated Extension Theorem A.1.1. Let V be a real linear space,
q:V — R be a sublinear functional, i.e.,

q(z+y) <qlz)+qly) and  q(t-z)=1t-q(v)

Jorallz,y €V andt > 0, let W CV be a subspace, and L : VW — R be a linear functional
such that L(x) < q(z) for all x € W. Then there exists an extension L :V — R of L
such that L(z) < q(x) for all x € V holds.

A.2. The Riesz—Markov—Kakutani Representation Theorem

Riesz—Markov—Kakutani Representation Theorem A.2.1 ([Rie09, Mar38, Kak41]).
Let X be a locally compact Hausdorff space and L : Co(X,R) — R be a linear functional
such that L(f) > 0 for all f € C.(X,R);. Then there exists a unique p € M(X) with

L(f) = /X f(x) du(z)

for all f € C.(X,R).

The present representation theorem was developed in several stages. A first version
for continuous functions on the unit interval [0, 1] is by Frigyes Ries#”] [Rie09]. It was
extended by Andrey Markovlg_g] to some non-compact spaces [Mar38| and then by Shizuo
Kakutanﬂ to locally compact Hausdorff spaces [Kak41]. Interestingly, it already follows
from Daniell’ﬂ Representation Theoremm [Dani8,Dan20] with Urysohn’s Lemma@
[Ury25].

A.3. Stone—WeierstraB®’] Theorem

Stone—Weierstral3 Theorem A.3.1. Let X be a compact Hausdorff space and A C
C(X,R) be a unital algebra. Then A is dense in C(X,R) if and only if A separates
points.

3'Hans Hahn (27 September 1879, Vienna — 24 July 1934, Vienna);
Stefan Banach (30 March 1892, Krakow — 31 August 1945, Lemberg)
32Frigyes Riesz (22 January 1880, Gyor (Hungary) — 28 February 1956, Budapest)
33 Andrey Andreyevich Markov (14 June 1856, Rjasan (Russia) — 20 July 1922, Petrograd)
34Shizuo Kakutani (28 August 1911, Osaka — 17 August 2004, New Haven (Connecticut))
35Percy John Daniell (9 January 1889, Valparaiso (Chile) — 25 May 1946, Sheffield (UK))
36Pavel Samuilovich Urysohn (3 February 1898, Odessa — 17 August 1924, Batz-sur-Mer (France))
3TMarshall Harvey Stone (8 April 1903, New York City — 9 January 1989, Madras (India));
Karl Theodor Wilhelm Weierstrafl (31 October 1815, Ostenfelde (near Ennigerloh) — 19 February
1897, Berlin)
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A.4. Carathéodory’s Theorem

Carathéodory’s Theorem A.4.1 (conic version, see e.g. [Roc72, Cor. 17.1.2]). Let
d € N, {C;|i € I} be an arbitrary collection of non-empty convex sets in R, and let
K be the convexr cone generated by the union of the collection. Then every non-zero
vector of K can be expressed as a non-negative linear combination of d or fewer linearly
independent vectors, each belonging to a different C.

A.5. Sard’s8 Theorem

Definition A.5.1. Let n,m € N, X C R" be open, and f : X — R™ be a C'-mapping.
x € X is called a regular point if D f(z) has full rank. Otherwise x € X is called singular.
A point y € R™ is called a regular value if f~'(y) is empty or consists solely of regular
points. Otherwise y € R™ is called a singular value.

Sard’s Theorem A.5.2 ([Sar42]). Let n,m € N, X C R" be open, and f : X — R™
be a C"-mapping with r > max{0,n — m}. Then the set of singular values of f has
m-dimensional Lebesque measure zero and the reqular values are dense in R™.

There is also an algebraic version of Sard’s Theorem, see e.g. [BCRIS].

A.6. Daniell’s Representation Theorem

Definition A.6.1. Let X be a space. We call a set F of functions f : X — R a lattice
(of functions) if the following holds:

i) c-feFforallc>0and f € F,
ii) f+ge Fforall f,ge F,

iii) inf(f,g) € F for all f,g € F,

iv) inf(f,c) € F for all ¢ > 0 and f € F, and
v) g— f e Fiorall f,g e F with f <g.

Daniell’s Representation Theorem A.6.2 (P. J. Daniell 1918 [Danl8]). Let F be a
lattice of functions on a space X and let L : F — R be such that

1) L(f +9) = L(f) + L(g) for all f,g € F,

ii) L(c- f) =c-L(f) for allc >0 and f € F,

iii) L(f) < L(g) for all f,g € F with f < g,
L(

i) L(f,) /" L(g) asn — oo for all g € F and f, € F with f, g.

38 Arthur Sard (28 July 1909, New York City — 31 August 1980, Basel)
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Then there exists a measure u on (X, A) with
A= o({f N ((~oc,a) [a € R, f € F))
such that
L) = [ 5@ dua)
forall f € F.

The most impressive part is that the functional L : 7 — R lives only on a lattice F of
functions f : X — R where & is a set without any structure. Daniell’s Representation
Theorem provides a representing measure g including the o-algebra A of the
measurable space (X, .A).

Riesz-Markov-Kakutani Representation Theorem [A.2.T|follows directly from Daniell’s
Representation Theorem . Co(X,R), X a locally compact Hausdorff space, is a
lattice of functions, (i) and (ii) are the linearity of L, (iii) non-negativity of L, and the
continuity condition (iv) of L follows easily from uniform convergence in Cy(X, R).
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