Training and Movement Science: New publication
Louis-Solal Giboin, Markus Gruber, and Andreas Kramer published a new article titled "Motor learning of a dynamic balance task : Influence of lower limb power and prior balance practice"
Abstract
Objectives
We wanted to verify if the “learning to learn” effect observed in the learning of visuomotor tasks is also present when learning a balance task, i.e., whether the learning rate of a balance task is improved by prior practice of similar balance tasks.
Design
Single centre, parallel group, controlled training study.
Methods
32 young healthy participants were divided into a control and a training group. The training group’s practice consisted of 90 trials of three balance tasks. Forty-eight hours after the training, we recorded performance during the acquisition (90 trials) of a novel balance task in both groups, and 24 h thereafter we measured its retention (10 trials).
Results
Mixed models statistical analysis showed that the learning rate of both the acquisition and the retention phase was not influenced by the 90 prior practice trials performed by the training group. However, participants with high lower limb power had a higher balance performance than participants with low power, which can be partly explained by the higher learning rate observed during the acquisition phase for participants with high power.
Conclusions
Contrary to visuomotor or perceptual tasks, we did not find a “learning to learn” effect for balance tasks. The correlation between learning rate and lower limb power suggests that motor learning of dynamic balance tasks may depend on the physical capability to execute the correct movement. Thus, a prior strength and conditioning program with emphasis on lower limb power should be considered when designing a balance training, especially in fall prevention.