next up previous
Next: Compensation of the thermodiffusion Up: Thermopower und thermodiffusion Previous: Currents of diffusing particles:

Calculation of the thermodiffusion current


We imagine that an electron at position $ \vec r$ has been scattered last at a distance given by the mean free path $ l$, and we make the simplifying assumption that in this event the electron has assumed a velocity of absolute magnitude given by the mean value $ \overline v(T)$ which corresponds to the local temperature $ T$. It follows that an electron at $ \vec r$ with direction of flight $ \hat v$ has a velocity given by $ \hat v
\cdot \overline v (T (\vec r- l \cdot \hat v)) $ (Fig. 9). Averaging over the direction $ \hat v$, one obtains for the mean electronic velocity
$\displaystyle \vec u (\vec r)$ $\displaystyle \equiv$ $\displaystyle \langle \vec v\rangle_{\vec r}$  
  $\displaystyle =$ $\displaystyle \int \frac{d \Omega}{4 \pi} \hat v \cdot \overline v \left(
T(\vec r - l \hat v)\right) \, .$ (19)

Expanding

$\displaystyle T(\vec r - l \hat v) \approx T(\vec r) - l \hat v \cdot \vec\nabla
 T(\vec r)$ (20)

and

$\displaystyle \overline v \bigl( T(\vec r - l \hat v)\bigr) \approx v (T(\vec
 r)) - l \hat v \cdot \vec\nabla T(\vec r) \frac{d \overline v}{d
 T}$ (21)

one arrives at

$\displaystyle \vec u (\vec r) = - \frac{l}{3} \frac{\partial \overline
 v}{\partial T} \cdot \vec\nabla T (\vec r) \, .$ (22)

According to this result the different speeds, corresponding to different kinetic energies, of electrons arrived from different directions lead to a mean velocity in a direction opposite to the temperature gradient. This is the phenomenon of thermodiffusion! With (22) one obtains the corresponding current density as

$\displaystyle \vec j (\vec r)\vert_{\rm {Thermodiff.}} = n \cdot \vec u (\vec r).$ (23)

Introducing an off-diagonal transport coefficient $ l_{12}$ this result can be written as

$\displaystyle \vec j (\vec r)\vert_{\rm {Thermodiff.}} = -l_{12} \vec \nabla
 T(\vec r)/T \, .$ (24)

Comparison of (24) with (22) and (23) yields for $ l_{12}$

$\displaystyle l_{12} = \frac{l}{3} n T \frac{d \overline v}{dT}\, .$ (25)

Figure 9: Calculation of the current of thermodiffusion.
\epsfbox{jaeckle_abb9.eps}



next up previous
Next: Compensation of the thermodiffusion Up: Thermopower und thermodiffusion Previous: Currents of diffusing particles:
Klaus Froboese 2000-11-07